Luminescent and Redox-Active Polynuclear Transition Metal Complexes[†]

Vincenzo Balzani, Alberto Juris,* and Margherita Venturi

Dipartimento di Chimica "G. Ciamician", Università di Bologna, 40126 Bologna, Italy

Sebastiano Campagna and Scolastica Serroni

Dipartimento di Chimica Inorganica e Struttura Molecolare, Università di Messina, 98166 Messina, Italy

Received August 2, 1995 (Revised Manuscript Received October 20, 1995)

light- and/or redox-induced functions.^{1–16}

Contents

1. Scope and Limitations	759
2. General Background	760
2.1. Localized Molecular Orbital Approximation	760
2.1.1. Classification of Excited States in Mononuclear Complexes	761
2.1.2. Redox Behavior of Mononuclear Complexes	761
2.2. Polynuclear Complexes as Supramolecular Species	762
2.2.1. Characteristics of Supramolecular Species	762
2.2.2. Electronic Interaction in Polynuclear Complexes	763
2.2.3. Electron- and Energy-Transfer Processes	764
 Bridging Ligands: Electronic and Structural Properties 	767
4. Synthesis	769
4.1. Synthetic Strategies	769
4.2. Purification and Characterization	771
5. Redox Behavior	772
5.1. Properties of Molecular Components	772
5.2. Supramolecular Properties	772
6. Intercomponent Electron- and Energy-Transfer Processes. Representative Examples	773
6.1. Intercomponent Electron Transfer	773
6.1.1. Photoinduced Electron Transfer across a Rigid Spacer	773
6.1.2. Photoinduced Electron Collection	774
6.2. Intercomponent Energy Transfer	775
6.2.1. Small Antennas	775
6.2.2. Chainlike Systems	775
6.2.3. Dendrimers	776
7. Conclusions and Perspectives	777
8. List of the Bridging Ligands	779
9. Tables of Photophysical and Electrochemical Data	783
10. Abbreviations	828

1. Scope and Limitations

Great attention is currently paid to the synthesis of polynuclear transition metal complexes and the study of their photochemical, photophysical, and electrochemical properties. This interest is stimulated, in particular, by attempts to design and construct multicomponent systems (often called su-

[†] In memoriam of Mauro Ciano.

0009-2665/96/0796-0759\$25.00/0 © 1996 American Chemical Society

pramolecular species) capable of performing useful

A great deal of investigations on mononuclear transition metal complexes had previously shown that several families of these compounds are very interesting from the electrochemical, photochemical, and photophysical viewpoints.¹⁷⁻²² The metalligand interaction, in fact, is often (i) weak enough to allow the manifestation of intrinsic properties of metal and ligands (e.g., ligand-centered and metalcentered absorption bands and redox waves) and, at the same time, (ii) strong enough to cause the appearance of new properties, characteristic of the whole compound (e.g., metal-to-ligand or ligand-tometal charge-transfer bands).

On passing from mononuclear to polynuclear transition metal complexes, the situation becomes even more interesting because in the latter (supramolecular) compounds one can find, besides properties related to each metal-based component, properties related to the structure and composition of the whole array. A suitable choice of the mononuclear building blocks and bridging ligands and an appropriate design of the (supramolecular) structure can in fact allow the occurrence of very interesting and potentially useful processes such as energy transfer along predetermined pathways, photoinduced charge separation, multielectron exchange at a predetermined potential, etc.

The knowledge on the luminescence and redox properties of polynuclear transition metal complexes is rapidly accumulating, but it is disperse in a great number of journals. We have made an attempt to collect the available results, and we present them together with some fundamental introductory concepts and a few comments.

One of the main problems, of course, was to delimit the field of this review. Using personal criteria which are related to our own research interests, we decided to consider only polynuclear transition metal complexes that can be defined as supramolecular species (section 2.2) and that are reported to exhibit lumi*nescence*. For such compounds *only*, the electrochemical properties have also been reviewed. Furthermore, we decided to include only classical (Werner-type) polynuclear transition metal compounds where the number of metal-based units is exactly known and the connection between the metal centers is provided only by bridging ligands. Thus, a number of interesting systems such as polymer-appended metal

Vincenzo Balzani received his "Laurea" in Chemistry from the University of Bologna in 1960. After a few years as an assistant professor at the University of Ferrara, he joined the Faculty of Science of the University of Bologna in 1969, where he has remained to this day, becoming Professor in 1972. His research interests include photochemistry, photophysics, electrochemistry, electron-transfer reactions, chemiluminescence, supramolecular chemistry, and molecular devices.

Alberto Juris was born in Venezia in 1950. He received his "Laurea" in Chemistry from the University of Bologna in 1973. After a few years as an associate professor at the University of Pisa, he is now in the same position at the University of Bologna. His research interests include photophysics of polynuclear complexes and light–energy conversion in supramolecular species.

Margherita Venturi was born in Forlì in 1947. She received her "Laurea" in Chemistry from the University of Bologna in 1971. She is an associate professor at the University of Bologna. Her research interests include electrochemistry and photophysics of supramolecular systems.

complexes,²³ protein-bound metal complexes,²⁴ and compounds with direct metal-metal interaction²⁵ are not dealt with in this review. We have also excluded

Sebastiano Campagna was born in Mazzarrà S. Andrea in 1959. He received his "Laurea" in Chemistry from the University of Messina in 1983. After a postdoctoral fellowship with Professor V. Balzani at the University of Bologna (1985–1986), he joined the Department of Inorganic Chemistry of the University of Messina in 1987. His research interests include photochemistry and photophysics of supramolecular species and photo-induced energy- and electron-transfer processes.

Scolastica "Lella" Serroni was born in Cosenza in 1964. She received her "Laurea" in Chemistry from the University of Calabria in 1989 and her Ph.D. from the University of Pisa in 1993 with Professor G. Denti. At the present she is a postdoctoral fellow at the University of Messina. Her scientific interests include synthesis of luminescent and redox-active polynuclear metal complexes and supramolecular chemistry.

systems made of covalently bound metal porphyrin units in view of the minor role played in these systems (which can in fact be considered organic chromophores) by the metal ion.

We would also like to point out that the main aim of this review is to collect data. The presentation of background concepts is very limited since more detailed treatments can be found elsewhere (for relevant references, see later). Discussion of intercomponent energy- and electron-transfer processes, which constitute the most important outcome of light excitation of polynuclear complexes, is restricted to a few paradigmatic examples.

2. General Background

2.1. Localized Molecular Orbital Approximation

Transition metal complexes are made of metal ions and ligands which can also exist separately from each other. For this reason, as well as for the sake of convenience, the spectroscopic, redox, and kinetic

Figure 2.1. Schematic energy-level diagram for an octahedral transition metal complex. The various kind of electronic transitions are also indicated.

properties of transition metal complexes are usually discussed with the assumption that the ground state, the excited states, and the redox species can be described in a sufficiently approximate way by localized molecular orbital configurations.^{17–19,22,26–30} To better understand this point, it is convenient to make reference to schematic molecular orbital (MO) diagrams such as that shown in Figure 2.1, which represents the case of an octahedral complex. In such very simplified diagrams, each MO is labeled as metal (M) or ligand (L) according to its predominant localization. Thus, for example, the low-energy $\sigma\text{-bonding MO's, which result from the combination}$ of metal and ligand orbitals of appropriate symmetry, are labeled L since they receive the greatest contribution from the ligand orbitals. In the ground electronic configuration of transition metal complexes in their usual oxidation states, the $\sigma_{\rm L}$ and $\pi_{\rm L}$ orbitals are completely filled, the $\pi_{\rm M}$ orbitals are either partially or completely filled, and the higher orbitals are usually empty. Light absorption and redox processes change the orbital population, and each excited or redox state is assumed to be described by a single MO configuration.

2.1.1. Classification of Excited States in Mononuclear Complexes

The assignment of the various bands which appear in the absorption spectra of transition metal complexes is often a very difficult problem because the absorption spectra reflect, of course, the complexity of the electronic structure of these molecules. By using a diagram like that shown in Figure 2.1, it is possible to make a classification of the various electronic transitions according to the localization of the MO's involved. Specifically, we may identify three fundamental types of electronic transitions: 22,26-30

(i) transitions between MO's predominantly localized on the central metal, usually called *metalcentered* (MC), ligand-field, or d-d transitions; (ii) transitions between MO's predominantly localized on the ligands, usually called *ligand-centered* (LC) or intraligand transitions; and (iii) transitions between MO's of different localization, which cause the displacement of the electronic charge from the ligands to the metal or *vice versa*. These transitions are called *charge-transfer* (CT) transitions and, more specifically, can be distinguished into *ligand-to-metal charge-transfer* (LMCT) and *metal-to-ligand chargetransfer* (MLCT) transitions.

Less frequently encountered types of transitions (not shown in Figure 2.1) are those from a metalcentered orbital to a solvent orbital (*charge-transfer to solvent*, CTTS), or between two orbitals predominantly localized on different ligands of the same metal center (*ligand-to-ligand charge-transfer*, LLCT).

The chemical and physical properties of these orbitally different excited states have been discussed in several reviews and books^{17–22,26–30} and will not be dealt with here.

It must be pointed out that the above classification of electronic transitions and electronically excited states is somewhat arbitrary and loses its meaning whenever the involved states cannot be described by localized MO configurations. It should also be noticed that the energy ordering of the various orbitals may be different from that shown in Figure 2.1. For example, in the case of $[Ru(bpy)_3]^{2+}$ the π^*_L orbital is thought to be lower in energy than the σ^*_{M} orbital. More generally, the excited-state energy ordering is extremely sensitive to the type of the ligands and the nature and oxidation state of the metal. For example, the lowest excited state in $[Ir(phen)Cl_4]^-$, $[Ir(phen)_2Cl_2]^+$, and $[Ir(phen)_3]^{3+}$ is MC, MLCT, and LC, respectively;^{17,30,31} the lowest excited state of $[Rh(bpy)_2Cl_2]^+$ is MC, whereas that of $[Ir(bpy)_2Cl_2]^+$ is MLCT;³² the lowest excited state of [Ru(bpy)₃]²⁺ and $[Os(bpy)_3]^{2+}$ is MLCT, whereas that of [Ru- $(bpy)_3$ ³⁺ and $[Os(bpy)_3]^{3+}$ is LMCT.²² Further complications arise from the fact that the energy splitting between the spin states (e.g., singlet and triplet) belonging to the same orbital configuration is very large for the MC and LC excited states because in these cases the two interacting electrons occupy the same region of space, whereas it is smaller for the CT states. It follows that the excited-state energy ordering may be different in the spin-allowed and spin-forbidden manifolds. Finally, it should be recalled that in transition metal complexes there may be a considerable degree of spin–orbit coupling. This effect, being related to the central heavy (metal) atom, is different for different types of excited states. Almost pure LC states are scarcely affected, whereas for MC and CT states of metals belonging to the third transition row it may become almost meaningless to talk about discrete spin states.^{33,34} In the current literature, however, the spin label is generally used even when its meaning is not strict. Finally, it should be recalled that for compounds having openshell ground-state configuration (e.g., Cr(III) compounds), intraconfiguration MC excited states can be found at low energies.²⁶

2.1.2. Redox Behavior of Mononuclear Complexes

In the localized MO approximation, oxidation and reduction processes are viewed as metal or ligand centered.^{19,21,35} The highest energy occupied molecular orbital (HOMO) is most usually metal centered, whereas the lowest unoccupied molecular orbital (LUMO) is either metal or ligand centered, depending on the relative energy ordering. When the ligand field is sufficiently strong and/or the ligands can be easily reduced, reduction takes place on the ligand. When the ligand field is weak and/or the ligands cannot be easily reduced, the lowest empty orbital can be metal centered.

In several cases oxidation and/or reduction lead to a decomposition of the complex, whereas in other cases the oxidized and/or reduced forms are stable, which is of course a fundamental requirement for most device-type applications.

Typical examples of well-behaved compounds are the Ru^{II}-polypyridine complexes. Their oxidation is metal centered and leads to Ru(III) compounds (lowspin $\pi_M(t_{2g})^5$ configuration) which are inert to ligand substitution:

$$[Ru^{II}(L)_3]^{2+} \rightarrow [Ru^{III}(L)_3]^{3+} + e^-$$
 (2.1)

Only this first metal-centered oxidation process can be observed in the potential window available in the usual solvents (e.g., acetonitrile), but in SO₂ solution at -70 °C other processes involving ligand oxidation can be observed.³⁶ Exact comparison between the potentials reported in the literature²¹ is not an easy task because of the different experimental conditions used. It can be stated, however, that the Ru(III)/Ru-(II) reduction potential in most complexes which contain only polypyridine-type ligands falls in a rather narrow range around +1.25 V (vs SCE, acetonitrile solution).^{21,37} Substitution of one bpy ligand by two Cl⁻ ions to give [Ru(bpy)₂Cl₂] lowers the potential to +0.32 V, whereas the strong π -acceptor CO causes an increase of the reduction potential above +1.9 V.²¹

Reduction of the Ru^{II}-polypyridine complexes takes place on a π^* orbital of the polypyridine ligands. Therefore the reduced form, keeping the low-spin $\pi_{M^-}(t_{2g})^6$ configuration, is usually inert and the reduction process is reversible:

$$[\mathrm{Ru}^{\mathrm{II}}(\mathrm{L})_3]^{2^+} + \mathrm{e}^- \rightarrow [\mathrm{Ru}^{\mathrm{II}}(\mathrm{L})_2(\mathrm{L}^-)]^+ \quad (2.2)$$

The added electron is localized on a single ligand.^{19,37} Several reduction steps can often be observed in the accessible potential range. In DMF at -54 °C, up to six CV waves can be observed for $[Ru(bpy)_3]^{2+}$ in the potential range between -1.33 and -2.85 V (vs SCE), which are assigned to successive first and second reduction of the three bpy ligands yielding a complex that can be formulated as $[Ru^{2+}(bpy^{2-})_3]^{4-.38}$ The localization of the acceptor orbitals in the reduction process is often particularly clear in mixed-ligand complexes involving polypyridine-type ligands with different energies of their π^* orbitals.²¹

If Koopman's theorem is valid for the starting complex and for its one-electron reduced form, the π^*_L and σ^*_M orbitals involved in the reduction processes (redox orbitals) are the same orbitals which are involved in the MLCT and MC transitions, respectively (spectroscopic orbitals).¹⁹ Thus, reversibility of the first reduction step, indicating a ligand centered LUMO, also implies (to a first approximation) that the lowest excited state is MLCT. Scheme 2.1. Illustration of Photochemical and Electrochemical Criteria Used To Classify a Complex Chemical Species as a Supramolecular Species or as a Large Molecule^a

 a The symbol " \sim " indicates any type of "bond" that keeps together the A and B moieties.

2.2. Polynuclear Complexes as Supramolecular Species

2.2.1. Characteristics of Supramolecular Species

From a photochemical and electrochemical viewpoint, a supramolecular species may be defined as a complex system made of molecular components with definite individual properties.^{7,10} This happens when the interaction energy between components is small compared with other relevant energy parameters. As shown in Scheme 2.1,¹⁰ light excitation of a supramolecular species $A \sim B$ (~ indicates any type of bond or connection that keeps together the A and B components) leads to excited states that are substantially localized either on the A or on the B component (or causes directly an electron transfer from A to B or vice versa, see later). When the excited states are substantially delocalized on both A and B, the species is better considered as a large molecule. Similarly, oxidation and reduction of a supramolecular species can substantially be described as oxidation and reduction of specific components (Scheme 2.1), whereas oxidation and reduction of a large molecule leads to species where the hole or the electron are delocalized on the entire species.

The above concepts can easily be applied to polynuclear metal complexes. Consider, for example, a dinuclear compound $[(L)_n M_a L-S-LM_b(L)_n]^{(x+y)+}$, where L-S-L is a bridging ligand in which the two coordination sites L are connected by a spacer S (see section 3). Although the presence of the bridging ligand can create some ambiguities, in most cases [(L)_nM_aL-S- $L]^{x+}$ and $[L-S-LM_b(L)_n]^{y+}$ may be considered molecular components with well-defined individual properties: for example, integral oxidation states can be assigned to M_a and M_b, and independent excitation of the $[(L)_nM_aL-S-L]^{x+}$ and $[L-S-LM_b(L)_n]^{y+}$ components is feasible. Such complexes can be considered supramolecular species. When localized redox and excitation processes cannot be performed, a complex has to be considered a large molecule. As mentioned in section 1, in this article we will consider only polynuclear metal complexes that can be classified as supramolecular species.

nuclear configuration

Figure 2.2. Potential energy curves for mixed-valence compounds with negligible (a), weak (b), and strong (c) electronic coupling. In b and c, the dashed curves represent the zero-order states.

2.2.2. Electronic Interaction in Polynuclear Complexes

A very important role in determining whether a polynuclear complex can be considered a supramolecular species or it should be better dealt with as a large molecule is played, of course, by the bridging ligands. The problem of metal-metal interaction through a bridging ligand has been discussed in considerable detail in the case of the so-called mixedvalence complexes.³⁹⁻⁴¹ Let us consider a homodinuclear complex of the type $[(L)_nML-S-LM(L)_n]^{5+}$, hereafter abbreviated as M-M, where all the ligands are uncharged. In a fully localized description, the overall 5+ charge corresponds to a M^{II}-M^{III} complex. On the other hand, in a fully delocalized description a $M^{II1/2}-M^{II1/2}$ complex would result. The factors determining the localized or delocalized nature of the complex can easily be appreciated following the approach originally developed by Hush.⁴⁰

Consider the valence-localized "electronic isomers" M^{II}-M^{III} and M^{III}-M^{II}. A specific equilibrium geometry corresponds to each of these species, in terms of both inner (e.g., metal-ligand distances at both centers) and outer (e.g., orientation of solvent molecules around both centers) nuclear degrees of freedom. This is depicted in Figure 2.2a using parabolic potential energy curves for the two electronic isomers and a generalized nuclear coordinate involving both inner and outer nuclear displacements. Figure 2.2a emphasizes the fact that at the equilibrium geometry of each electronic isomer the other isomer can be considered an electronically excited state. The energy separation between these two states at the equilibrium geometry is usually called reorganizational energy and is indicated by λ (this quantity is related to the intrinsic barrier $\Delta G^{\ddagger}(0)$ of the Marcus electron-transfer theory, $\Delta G^{\dagger}(0) = \lambda/4$, vide infra). At

the crossing point, both electronic isomers have the same energy and geometry. This is the nuclear configuration where there are no Franck-Condon restrictions to electron exchange between the two centers. Its energy is, in this model, one quarter of the reorganizational energy. If for some reason (e.g., very long metal-metal distance, or insulating character of the bridging ligand) the electronic interaction between the M(II) and M(III) centers, H, is absolutely negligible, the curves of Figure 2.2a adequately represent the system at any geometry along the nuclear coordinate. The system is expected to exhibit properties which are an exact superposition of the properties of the isolated $[(L)_nML-S-L]^{2+}$ and $[L-S-L]^{2+}$ $LM(L)_n$ ³⁺ components. Furthermore, even if the system acquires sufficient activation energy to reach the intersection region, the probability of electron exchange is negligible. In the field of mixed-valence chemistry, this is usually called class I behavior.³⁹

In most dinuclear complexes, however, some electronic interaction is likely to occur between the M(II) and M(III) centers, either as a consequence of direct orbital overlap or via a superexchange mechanism (vide infra). In such cases, the curves of Figure 2.2a are only zero-order representations. The electronic interaction has almost no effect on the zero-order curves in the vicinity of the equilibrium geometries, where the difference in energy between the electronic isomers is much larger than H, but causes mixing of the zero-order states (avoided crossing) in the vicinity of the crossing point (Figure 2.2b). Systems of this type can still be considered as valence localized, and will still exhibit the properties of the isolated [(L)nML-S-L]²⁺ and [L-S-L $M(L)_n$]³⁺ components. However, new properties promoted by the M^{II}-M^{III} interaction can be observed, such as the so called optical inter*valence-transfer* (IT) transition (with $hv = \lambda$) interconverting the two electronic isomers:

$$[(L)_{n}M^{II}L-S-LM^{III}(L)_{n}]^{5+} \xrightarrow{h\nu} [(L)_{n}M^{III}L-S-LM^{II}(L)_{n}]^{5+} (2.3)$$

The barrier to thermal electron transfer is only negligibly smaller than that calculated on the basis of the zero-order curves ($\lambda/4$). This behavior is usually called class II.³⁹

If electronic coupling is provided by the bridging ligand, the zero-order levels can be substantially perturbed even in the vicinity of their equilibrium geometries. In the limit of a very large electronic coupling, when $H \approx \lambda$, the true first-order curves will show a single minimum at an intermediate geometry (Figure 2.2c). In this case the dinuclear complex is better considered as a fully delocalized M^{II1/2}–M^{II1/2} species, with properties that are almost unrelated to those of the [(L)_nML-S-L]²⁺ and [L-S-LM(L)_n]³⁺ components. This case is commonly indicated as class III.³⁹

The above classification of mixed-valence compounds has been illustrated using symmetric redox systems, that is, systems made of identical units in which there is no driving force for intramolecular electron transfer. The arguments concerning the degree of electron delocalization are, however, general and can be easily extended to systems which exhibit redox asymmetry because of the presence of different metals (e.g., $[(L)_nM_a^{II}L-S-LM_b^{III}(L)_n]^{5+})$ or different ligands (e.g., $[(L_a)_nM^{II}L-S-LM^{III}(L_b)_n]^{5+})$). More details about asymmetric systems will be given in section 2.2.3.3. Clearly, mixed-valence class I and II compounds belong to our operational definition of supramolecular species, while class III systems fall in the "large molecule" limit.

So far we have discussed the problem of localization and delocalization with respect to the oxidation states. For example, upon oxidation of $[(L)_n M^{II}L-S-LM^{II}(L)_n]^{4+}$ one can obtain either the $[(L)_n M^{II}L-S-LM^{III}(L)_n]^{5+}$ species (localized, supramolecular case) or the $[(L)_n M^{II1/2}L-S-LM^{II1/2}(L)_n]^{5+}$ species (delocalized, large-molecule case). In the former case, two electronic configurations that differ in the population of two orbitals can be interconverted by means of an intercomponent electron-transfer process (eq 2.3).

An important situation that can be discussed along the same lines is that of localization or delocalization of electronic photoexcitation. Upon irradiation of a $(L)_nM_aL-S-LM_b(L)_n$ compound one can obtain either a *[$(L)_nM_aL$]-S-LM_b $(L)_n$ species (localized excitation, supramolecular case), or a *[$(L)_nM_aL$ -S-LM_b $(L)_n$] species (delocalized excitation, large-molecule case). In the former case, two electronic configurations that differ in the populations of four orbitals can be interconverted by an energy-transfer process (eq 2.4):

*[(L)_nM_aL]-S-LM_b(L)_n
$$\rightarrow$$
 (L)_nM_aL-S-*[LM_b(L)_n]
(2.4)

The above discussion (Figure 2.2) emphasizes that the degree of electronic interaction (*H*) in a supramolecular species must be small. It must be recognized, however, that "small" is not intended in an absolute sense, but with respect to the energy of vibrational trapping (λ). In the polynuclear complexes dealt with in this review, the relative magnitudes of λ and *H* are such that a localized description (and therefore a supramolecular-type approach) is appropriate.

2.2.3. Electron- and Energy-Transfer Processes

Important and distinctive photochemical processes of supramolecular species are those taking place between components. Particularly important for the topics discussed in this review are two processes that can follow light excitation of a component (photoinduced electron and energy transfer), and an electrontransfer process that takes place directly upon light excitation (optical electron transfer). To discuss these processes, we will refer to a generic supramolecular system $A \sim B$ (Scheme 2.1). In the case of a $[(L)_nM_aL-S-LM_b(L)_n]$ dinuclear complex (section 2.2.2) A, \sim , and B represent the $(L)_nM_aL$, -S-, and $LM_b(L)_n$ moieties, respectively.

2.2.3.1. Photoinduced Electron Transfer. It is well known that light excitation increases both the oxidizing and the reducing power of a molecule.¹⁸ In a multicomponent supramolecular system, therefore, light excitation can often be followed by an electron-transfer process, e.g.:

photoexcitation

$$A \sim B + h\nu \rightarrow *A \sim B \tag{2.5}$$

photoinduced oxidative electron transfer

$$A \sim B \rightarrow A^+ \sim B^-$$
 (2.6a)

photoinduced reductive electron transfer

$$A \sim B \to A^- \sim B^+ \tag{2.6b}$$

The relevant thermodynamic parameters are the reduction potentials of the $A^+/*A$, B/B^- , and $*A/A^-$, B^+/B couples. To a first approximation, the reduction potentials for the excited state couples may be calculated from the reduction potentials of the ground-state couples and the one-electron potential corresponding to the zero-zero excitation energy:

$$E(A^{+}/*A) \approx E(A^{+}/A) - E^{0-0}$$
 (2.7)

$$E(*A/A^{-}) \approx E(A/A^{-}) + E^{0-0}$$
 (2.8)

As a consequence, feasibility of an excited state electron-transfer process can be assessed by means of the well-known Weller equation.⁴² For the process of eq 2.6a, it is given by

$$\Delta G^{\circ} \approx -E^{0-0} - E(B/B^{-})' + E(A^{+}/A)' - E_{IP}$$
 (2.9)

where ΔG° is the free energy change of the process, E^{0-0} is the spectroscopic energy of the excited state, $E(B/B^-)'$ and $E(A^+/A)'$ are the one-electron energies corresponding to the reduction of the two species (i.e., the components of the supermolecule) involved in the process, and E_{IP} is the Coulombic stabilization energy of the products.

Detailed discussion of the current theoretical models used to interpret the rates of electron- and energytransfer processes in supramolecular species are given in several review articles and books.^{7,43–49} We will only recall a few fundamental concepts.

In an absolute rate formalism (Marcus model),⁴³ the rate constant for an electron-transfer process

$$A \sim B \to A^+ \sim B^- \tag{2.10}$$

can be expressed as:43,44

$$k = \nu_{N^{K}} \exp(-\Delta G^{*}/RT) \qquad \Delta G^{*} = \left(\frac{\lambda}{4}\right) \left(1 + \frac{\Delta G^{\circ}}{\lambda}\right)^{2}$$
(2.11)

where ν_N is the average nuclear frequency factor, κ is the electronic transmission coefficient, ΔG^{\dagger} (expressed by the Marcus quadratic relationship) is the free activation energy, ΔG° is the standard free energy change of the reaction, and λ is the reorganizational energy (Figure 2.3). This equation predicts that for a homogeneous series of reactions (i.e., for reactions having the same λ and κ values) a log k vs ΔG° plot is a bell-shaped curve involving (i) a "normal" region for endoergonic and slightly exoergonic reactions in which log k increases with increasing driving force, (ii) an activationless maximum for $\lambda = -\Delta G^{\circ}$, and (iii) an "inverted" region, for strongly

Figure 2.3. Profile of the potential energy curves of an electron-transfer reaction: **i** and **f** indicate the initial ($A \sim B$) and final ($A^+ \sim B^-$) states of the system (eq 2.10). The inset shows a detail of the crossing of the two curves. The dashed curve indicates the final state for a self-exchange (isoergonic) process.

exoergonic reactions, in which log *k* decreases with increasing driving force.

The reorganizational energy λ can be expressed as the sum of two independent contributions corresponding to the reorganization of the "inner" (bond lengths and angles within the two reaction partners) and "outer" (solvent reorientation around the reacting pair) nuclear modes:

$$\lambda = \lambda_{i} + \lambda_{o} \tag{2.12}$$

The outer reorganizational energy, which is by far the predominant term in electron-transfer processes, can be calculated by the expression:⁴⁴

$$\lambda_{\rm o} = e^2 \left(\frac{1}{\epsilon_{\rm op}} - \frac{1}{\epsilon_{\rm s}} \right) \left(\frac{1}{2r_{\rm A}} + \frac{1}{2r_{\rm B}} - \frac{1}{2r_{\rm AB}} \right) \quad (2.13)$$

where *e* is the electronic charge, ϵ_{op} and ϵ_s are the optical and static dielectric constants of the solvent, r_A and r_B are the radii of the reactants, and r_{AB} is the interreactant center-to-center distance.

The transmission coefficient κ in eq 2.11 is related to the detailed shape of the potential energy curves in the intersection region. Strictly speaking, the reactant and product potential energy curves of Figure 2.3 correspond to zero-order wave functions of the system. If there were no electronic interaction between these zero-order states, no mechanism for transition from reactants to products would be available. Actually, in most practical systems a small but finite electronic interaction occurs between A and B in the reactant pair, and a perturbation Hamiltonian *H* coupling the initial (A \sim B) and final (A $+\sim$ B-) states of the system should be considered. This electronic coupling mixes the zero-order states in the intersection region, leading to the first-order avoided-crossing surfaces shown in the inset of Figure 2.3. A quantitative expression for the transmission coefficient can be obtained⁴⁴ within the framework of the Landau–Zener treatment of avoided crossings. The relevant result is shown by eqs 2.14 and 2.15:

$$\kappa = 2[1 - \exp(-\nu/2\nu_{\rm N})]/[2 - \exp(\nu/2\nu_{\rm N})] \quad (2.14)$$

$$\nu = (2H^2/h)(\pi^3/\lambda RT)^{1/2}$$
 (2.15)

Two limiting cases can be identified on the basis of the eqs 2.11, 2.14, and 2.15:

(i) If the electronic interaction *H* is very small, $\nu \ll \nu_{\rm N}$, $\kappa = (\nu/\nu_{\rm N}) \ll 1$, and *k* is given by eq 2.16:

$$k = \nu \exp(-\Delta G^{\#}/RT) \qquad (2.16)$$

This is called the *nonadiabatic* limit of electrontransfer reactions, in which the rate-determining step is the electron transfer at the transition-state geometry. The unimolecular rate constant is much smaller than the nuclear frequency and is very sensitive to factors that may influence the degree of electronic interaction between the reactants (for example, centerto-center distance, steric hindrance of substituents, orientational factors, nature of interposed groups or medium, etc.).

(ii) If *H* is sufficiently high that $v \gg v_N$, $\kappa = 1$, and *k* is given by eq 2.17:

$$k = v_{\rm N} \exp(-\Delta G^{\ddagger}/RT) \qquad (2.17)$$

This is called the *adiabatic* limit of electron-transfer reactions, in which the rate-determining step is the nuclear motion that leads to the transition-state geometry. The unimolecular reaction rate constant may approach (for small ΔG^{\ddagger}) the nuclear frequency factor, and the reaction is insensitive to factors that may influence the degree of electronic interaction between the reactants.

The value of *H* depends on the overlap between the electronic wave functions of the donor and acceptor groups, which should decrease exponentially with increasing donor-acceptor distance. The calculation of *H* in real systems is generally a difficult theoretical problem. In favorable cases, on the other hand, it is possible to estimate the magnitude of H from spectroscopic data.⁴⁰ It should be noticed that the amount of electronic interaction required to promote electron transfer is very small in a common sense. In fact, it can be easily verified by substituting reasonable numbers for the parameters in eqs 2.11, 2.14, and 2.15 that, for an activationless reaction, H values of a few wavenumbers are sufficient to give rates in the subnanosecond time scale, and a few hundred wavenumbers may be sufficient to reach the limiting adiabatic regime.

In polynuclear metal complexes the bridging ligand is expected to play an important role in governing the electronic interaction. In fact, depending on its length and electronic structure, the bridging ligand can induce a more or less important degree of delocalization between the components, thus increasing *H* with respect to the corresponding intercomponent value at the same center-to-center distance. The role of the bridging ligand in enhancing the electronic coupling between the active components in a supramolecular system can be described in terms of *superexchange theory*.^{50–58} This theory provides an approach where overlap between orbitals of the metal-based units is mediated by overlap with the orbitals of the bridging ligand (through-bond interaction). Within this approach, both bridge-mediated *electron-transfer* (which takes advantage of the lowest unoccupied molecular orbitals, LUMO's, of the bridge) and hole-transfer (which takes advantage of the 766 Chemical Reviews, 1996, Vol. 96, No. 2

highest occupied molecular orbitals, HOMO's, of the bridge) mechanisms can contribute to the electronic coupling between the two metal-based units. The parameters which govern the extent of the interaction are orbital overlap and energy gap between the relevant metal orbitals and LUMO/HOMO orbitals of the bridging ligand.

When a bridging ligand contains a spacer made of one or more subunits, the superexchange model has to be further elaborated to include interactions between the single subunits.^{54–58} This translates into an exponential dependence of the electronic coupling on the number of subunits, i.e., on the through-bond length r of the spacer, as expressed by eq 2.18:

$$H = H(0) \exp[(\beta/2(r - r_0)]$$
 (2.18)

In eq 2.18 r_0 is the distance between the active components without the spacer, H(0) is the corresponding electronic coupling value, and β is a term which contains the interactions between the subunits of the spacer.

It should also be noticed that the classical treatment neglects the role played by high-energy frequency vibrations as accepting modes. A simple quantum mechanical model treats the electrontransfer process as an activated radiationless transition between different electronic states of the supermolecule, leading to a golden-rule expression:⁴⁶

$$k = (2\pi/\hbar) H^2 FCWD \qquad (2.19)$$

where the FCWD term is the Franck–Condon weighted density of states. In a simple approximation in which the solvent modes (average frequency, v_0) are thermally excited and treated classically ($hv_0 \ll k_{\rm B}T$), and the internal vibrations (average frequency, v_i) are frozen and treated quantum mechanically ($k_{\rm B}T \ll hv_i$), the FCWD term is given by⁵⁹

$$FCWD = \frac{1}{(4\pi\lambda_0 RT)^{1/2}} e^{-S} \sum_{m} \frac{S^m}{m!} \exp\left[-\frac{(\Delta G^\circ + \lambda_0 + mh\nu_i)^2}{4\lambda_0 RT}\right] (2.20)$$
$$S = \lambda_i / h\nu_i$$

In eq 2.20, λ_0 and λ_i are the outer and inner reorganizational energies, and the summation extends over *m*, the number of quanta of the inner vibrational mode in the product state. It can be shown that, in the high-temperature limit, eqs 2.19 and 2.20 reduce to eq 2.21, where $\lambda = \lambda_0 + \lambda_i$.

$$k = (2\pi/\hbar)H^2 (4\pi\lambda RT)^{-1/2} \exp[-(\Delta G^\circ + \lambda)^2/4\lambda RT]$$
(2.21)

By comparison with eqs 2.11, 2.14, and 2.15 it is seen that the high-temperature limit of the quantum mechanical expression corresponds to the *nonadiabatic* limit of the classical Marcus theory, in which the electronic coupling is small and the rate-determining step is electron rather than nuclear motion. In this limit the FCWD term in eq 2.19 corresponds to the exponential term of the classic rate constant (eq 2.11). Besides the inherent nonadiabaticity of the quantum mechanical mode, an important difference between the quantum mechanical and the classical models is that eq 2.19 allows for *nuclear tunneling* between reactant and product levels at energies lower than that of the intersection point. This difference is especially relevant to the behavior predicted for highly exoergonic reactions, for which the parabolic behavior of the Marcus inverted region is substituted by a linear decrease of log *k* with increasing driving force (energy-gap law).^{46,59}

2.2.3.2. Energy Transfer. Electronic energy-transfer processes (eq 2.22)^{7,60} can occur by two mechanisms: the Förster-type mechanism,⁶¹ based on Coulombic interactions, and the Dexter-type mechanism,⁶² based on exchange interactions.

$$^{*}A \sim B \rightarrow A \sim ^{*}B \qquad (2.22)$$

The Förster-type mechanism is a long-range mechanism (its rate falls off as r^6 , where r is the separation distance between donor and acceptor), which is efficient when the radiative transitions corresponding to the deactivation and the excitation of the two partners have high oscillator strength. The Dextertype mechanism is a short-range mechanism (its rate falls off as e^r) that requires orbital overlap between donor and acceptor. When the donor and acceptor are linked together by chemical bonds, the exchange interaction can be enhanced by the superexchange mechanism (section 2.2.3.1).

The rate of energy transfer according to the Förster mechanism can be calculated on the basis of spectroscopic quantities by eq 2.23:

$$k_{\rm en} = 5.87 \times 10^{-25} (\Phi_{\rm A}/n^4 \tau_{\rm A} r^6) \int_0^\infty F_{\rm A}(\bar{\nu}) \epsilon_{\rm B}(\bar{\nu}) \, \mathrm{d}\bar{\nu}/\bar{\nu}^4$$
(2.23)

where Φ_A and τ_A are the luminescence efficiency and lifetime of the donor excited state, and the integral is related to the overlap between donor emission and acceptor absorption.

The rate constant for electron-exchange energy transfer may be expressed in a semiclassical formalism^{63–66} analogous to that used for electron-transfer processes. For a recent discussion of energy-transfer mechanisms in multichromophoric systems, see ref 67.

2.2.3.3. Optical Electron Transfer. The Marcus model makes it clear that reactants and products of an electron-transfer process are intertwined by a ground/excited state relationship. For example (Figure 2.3), for nuclear coordinates that correspond to the equilibrium geometry of the reactants (initial state, **i**), the product (final state, **f**) is an electronically excited state. Therefore, optical transitions connecting the two states are possible.

optical electron transfer

$$\mathbf{A} \sim \mathbf{B} + h\nu \rightarrow \mathbf{A}^+ \sim \mathbf{B}^- \tag{2.24}$$

Such *optical electron-transfer* processes are a generalized version of the above discussed intervalencetransfer processes (eq 2.3, Figure 2.2).

Figure 2.4. Relationships between optical (1), photoinduced (2 and 3), and thermal back (4) electron-transfer processes in supramolecular species. For the sake of simplicity, the vibrational levels are omitted.

Both optical electron transfer (eq 2.24) and photoinduced electron transfer (e.g., eq 2.5 *plus* eq 2.6a) may be followed by a thermal back-electron-transfer process:

thermal back-electron transfer

$$A^{+} \sim B^{-} \rightarrow A \sim B \qquad (2.25)$$

The relationships between optical, photoinduced and thermal back-electron-transfer processes in supramolecular species are schematized in Figure 2.4.

The Hush theory⁴⁰ correlates the parameters involved in the optical and thermal electron-transfer processes by means of eqs 2.26–2.28:

$$E_{\rm op} = \lambda + \Delta G^{\circ} \tag{2.26}$$

$$\Delta \bar{\nu}_{1/2} = 48.06 (E_{\rm op} - \Delta G^{\circ})^{1/2} (\rm cm^{-1})$$
 (2.27)

$$\epsilon_{\max} \Delta \bar{\nu}_{1/2} = H^2 \frac{r(\text{\AA})^2}{4.20 \times 10^{-4} E_{\text{op}}}$$
 (2.28)

where $E_{\rm op}$, $\Delta \bar{\nu}_{1/2}$, and $\epsilon_{\rm max}$ are the energy, half-width, and maximum intensity of the optical electrontransfer band, and *r* the center-to-center distance. As shown by eqs 2.26–2.28, the energy of the optical transition depends on both reorganizational energy and thermodynamics, the half-width reflects the reorganizational energy, and the intensity of the transition is mainly related to the magnitude of the electronic coupling between the two redox centers.

In principle, therefore, important kinetic information on a thermal electron-transfer process can be obtained from the study of the corresponding optical transition. In practice, due to the dependence of the intensity on *H*, optical electron-transfer bands may only be observed in systems with relatively strong intercomponent electronic coupling (e.g., for *H* values of 10, 100, and 1000 cm⁻¹, ϵ_{max} values of 0.2, 20, and 2000 M⁻¹ cm⁻¹, respectively, are obtained from eq 2.28 using $E_{\text{op}} = 15000 \text{ cm}^{-1}$, $\Delta \bar{\nu}_{1/2} = 4000 \text{ cm}^{-1}$, and r = 7 Å). Since a few hundred wavenumbers of electronic interaction may be sufficient to reach the limiting adiabatic regime (section 2.2.3.1), it is clear that weakly coupled systems may undergo relatively fast electron-transfer processes without exhibiting appreciably intense optical electron-transfer transitions.

Besides optical electron-transfer absorption, the possibility of optical electron-transfer emission should also be considered in the case of an electron-transfer process in the inverted region. Emissions of this type have been reported for covalently bound organic donor–acceptor systems,⁶⁸ as well as for ion pairs.⁶⁹

3. Bridging Ligands: Electronic and Structural Properties

In polynuclear complexes the metal-based components are linked together by bridging ligands. In several cases the coordinating moieties of the bridging ligands are linked together (and separated) by spacers (Figure 3.1a).

In the last few years the increasing interest in photoinduced energy- and electron-transfer processes in supramolecular systems has led to important progress in the design and preparation of new bridging ligands and in the development of versatile and selective synthetic strategies to assemble mononuclear complexes in supramolecular structures (section 4).

It should be pointed out that the role played by the bridging ligands in polynuclear complexes is extremely important for the following reasons: (i) with their coordinating sites they contribute (together with the "terminal" ligands) to determine the spectroscopic and redox properties of the active metal-based units;

Figure 3.1. (a) Schematic representation of a dinuclear complex and (b) schemes showing the geometrical structure of representative examples of dinuclear complexes based on bpy, phen, and tpy bridging ligands.

(ii) their spacers and the connections between spacers and coordinating sites determine the structure of the supramolecular system; (iii) the chemical nature of the bridging ligand (coordinating sites and spacer) controls the electronic communication between the metal-based units. Therefore the choice of suitable bridging ligands is crucial to obtain polynuclear complexes capable to showing luminescence, exhibiting interesting electrochemical properties, and giving rise to photoinduced energy- and electron-transfer processes.

A wide range of bridging ligands have been used in recent years, as one can see looking at section 8. Some of them are very simple, like CN^- . In most cases the bridging ligands contain pyridine-type coordinating units (particularly chelating sites like bpy) either directly connected or separated by a variety of spacers.

When the spacer linking the coordinating sites of a bridging ligand is not rigid (i.e., $a - (CH_2)_n - chain$), the discussion of the experimental results (particularly, the rates of energy- and electron-transfer processes in the frame of current theoretical treatments) can only be vague since the geometry of the system (e.g., the metal–metal distance) is not defined. Such systems are also of limited applicative interest because practical devices usually require the occurrence of vectorial energy or electron transfer over long distances.⁷ Therefore rigid spacers, which are of course much more difficult to synthesize, have to be preferred.

To further illustrate the role of the bridging ligands consider, for example, dinuclear Ru(II) complexes based on bridging ligands containing bpy, phen, and tpy chelating units (Figure 3.1b).

From the viewpoint of the excited-state properties, bpy and phen are much better ligands than tpy for Ru(II). It is well know, in fact, that at room temperature in fluid solution [Ru(bpy)₃]²⁺ and [Ru-(phen)₃]²⁺ exhibit a strong and long-lived luminescence (³MLCT lifetime of the order of $10^2 - 10^3$ ns),²¹ whereas $[Ru(tpy)_2]^{2+}$ does not show any luminescence (³MLCT lifetime of the order of 250 ps, from transient absorption measurements).⁷⁰ The reason for this difference is the following. The main radiationless decay path at room temperature is in all cases an activated crossing to an upper lying, distorted ³MC excited state.^{71,72} Since tpy has a bad bite angle for octahedral Ru(II) coordination,73-75 the ligand field strength in $[Ru(tpy)_2]^{2+}$ is weaker than in [Ru- $(bpy)_3]^{2+}$ and $[Ru(phen)_3]^{2+}$. As a consequence, the energy gap between the ³MLCT and ³MC levels is smaller in $[Ru(tpy)_2]^{2+}$ and the activated radiationless deactivation through ³MC is faster. At 77 K the activated radiationless decay through the ³MC level is frozen and $[Ru(tpy)_2]^{2+}$ exhibits a strong and longlived ($\tau = 10.6 \ \mu s$) luminescence, comparable to that shown by $[Ru(bpy)_3]^{2+}$ and $[Ru(phen)_3]^{2+}$.²¹

From the viewpoint of structure, however, bridging ligands based on tpy are much more appealing than those based on bpy or phen. One reason is that there are differences concerning the coordination to the metal centers. This is apparent on looking at Figure 3.2, where the structure of $[M(bpy)_3]^{n+}$ and $[M(tpy)_2]^{n+}$ complexes and of their derivatives are illustrated.^{76,77}

Figure 3.2. Schematic representations of (a) one of the two chiral isomers of an $[M(bpy)_3]^{n+}$ complex; (b) the *mer* geometrical isomer of an $[M(bpy-X)_3]^{n+}$ complex; (c) the unique (achiral) form of an $[M(tpy)_2]^{n+}$ complex; (d) the unique form of an $[M(tpy-X)_2]^{n+}$ complex.

2,2'-bipyridine gives rise to stereoisomerism at sixcoordinated centers due to its bidentate nature and therefore an $[M(bpy)_3]^{n+}$ complex exists in two enantiomeric forms. If the two coordinating nitrogens are not equivalent, as it happens for monosubstituted bpy (as well as for bridging ligands like 2,3-dpp) two geometrical isomers, *fac* and *mer*, are possible; furthermore each of them can exist as one of two enantiomers. In contrast to this behavior, a sixcoordinate metal forms an achiral $[M(tpy)_2]^{n+}$ complex upon reaction with tpy. The introduction of a single substituent in the 4'-position of each tpy ligands presents no additional problems.

Another important structural difference is illustrated in Figure 3.1b. Connection between bpy- or phen-type ligands with a spacer cannot occur along the coordination axis, whereas this can be obtained by 4'-substitution of the tpy ligand. The tridentate tpy ligand is therefore more appealing than the bidentate bpy and phen ligands from the point of view of constructing linear, rodlike polynuclear complexes.

From the above discussion, it is clear that one would need a ligand with the electronic properties of bpy or phen and, at the same time, the structural properties of tpy. To achieve this goal, two approaches have been recently attempted. On one side, the lifetime of the [Ru(tpy)₂]²⁺-based chromophoric unit has been noticeably increased by electronacceptor substituents on the 4'-position of the tpy ligand (for $[Ru(tpy-MeSO_2)(tpy)]^{2+}$, the luminescence lifetime at room temperature is 36 ns and the luminescence quantum yield is 4×10^{-4}).⁷⁸ On the other side, attempts have been made to construct bpy- and phen-based bridging ligands where the axis of the rigid spacer coincides with the coordination axes of the two bidentate ligands. Belser et al. have recently achieved this goal by preparing the bridging ligands FAF⁷⁹ and PAP⁸⁰ shown in Figure 3.3. In FAF the improvement of the structural properties has partially compromised the good electronic prop-

erties of bpy because the five-membered ring constructed to obtain an anchoring point for the spacer along the metal–ligand coordination axis opens the bite angle of the metal coordination site and therefore reduces the ligand field strength, with the same consequences previously discussed for tpy. Nevertheless, FAF remains a useful linear bridging ligand based on a bis-chelating unit.⁷⁹ In PAP the construction of the anchoring point along the metal–ligand coordination axis has not affected the phenanthroline coordination sites, so that this bridging ligand combines the excellent electronic properties of phen and the possibility, typical of 4'-tpy derivatives, to give linear rodlike dinuclear complexes.⁸⁰

Current developments in this field include the design of bridging ligands where the spacer is made of a progressive increasing number of rigid subunits (Figure 3.4). This allows one to obtain families of dinuclear compounds in which the metal-metal distance can be tuned without changing the nature of the active units. With such systems it is possible to perform systematic studies on the distance dependence of electron- and/or energy-transfer rates. Similar studies have already been performed on purely organic multicomponent systems.^{47,49,52,53,55,81-86} Main difficulties in facing this kind of study are connected with the lowering of solubility on increasing the number of rigid subunits.

The importance of the bridging ligands in determining electronic coupling between metal-based components is well recognized.^{46,87-94} As we have seen in section 2.2.3.1, the superexchange theory provides an approach where overlap between orbitals of the metal-based units is mediated by overlap with the orbitals of the bridging ligand (through-bond interaction). Within this approach, the parameters which govern the extent of the interaction are orbital overlap and energy gap between the relevant metal orbitals and LUMO/HOMO orbitals of the bridging ligand.⁹⁴ Bridging ligands with low-energy empty orbitals (usually, π^* orbitals for polypyridine bridges) maximize through-bond intercomponent interactions via electron-transfer pathways, whereas bridges with high-energy occupied orbitals (usually, π orbitals for polypyridine bridges) maximize through-bond intercomponent interactions via hole-transfer mechanism. Anionic bridges, for example, are expected to induce superexchange-assisted intercomponent interactions dominated by hole-transfer mechanism. It should also be noticed that (i) polynuclear complexes of the same bridging ligand experience different degrees of

Figure 3.4. Schematic representation (a) and examples (b) of bridging ligands based on modular spacers. For references, see Tables 9.76, 9.26, and 9.27.

intercomponent interaction on changing the nature of the metals, even if the orbital energies of the bridge are not significantly affected by the nature of the metals; (ii) peripheral ligands can affect intercomponent interaction by modulating the energy levels of metal orbitals.

As we have seen in section 2.2.3.1, when a bridging ligand contains a spacer made of one or more subunits (Figure 3.4), the superexchange model has to be further elaborated to include interactions between the single subunits. It should also be noticed that in polynuclear complexes the spacer between two remote metal-based components can include other metal-based units. For example, the central (μ -2,3-dpp)Ru(bpy)(μ -2,3-dpp)²⁺ component of the trinuclear species [(bpy)₂Ru(μ -2,3-dpp)Ru(bpy)-(μ -2,3-dpp)Ru(bpy)₂]⁶⁺ can be considered a "bridge" connecting the peripheral (μ -2,3-dpp)Ru(bpy)₂²⁺ chromophores.

For a more detailed discussion of the intercomponent interactions in dinuclear metal complexes, including representative examples, see ref 94.

4. Synthesis

4.1. Synthetic Strategies

The typical approach used to prepare polynuclear complexes is the so-called *complexes as metals and*

Figure 4.1. Schematic representation of the synthetic strategy used to prepare homodinuclear (a) and heterodinuclear (b) complexes.

complexes as ligands strategy,^{95,96} briefly illustrated in the following.

Mononuclear complexes are synthesized by combining metal ion (M) and free ligands (L), as shown in eq 4.1:

$$M + nL \to M(L)_n \tag{4.1}$$

In the "complexes as metals/complexes as ligands" strategy one uses *complexes* (building blocks) in the place of the metal (M) and/or of the ligands (L). The place of M can be taken by mono- or oligonuclear complexes that possess easily replaceable ligands, and the place of L can be taken by mono- or oligonuclear complexes which contain free chelating sites. By using this strategy it was possible to obtain polynuclear complexes containing up to 13 metals.⁹⁵

The application of this strategy to dinuclear complexes is briefly illustrated. If the target is the preparation of a dinuclear homometallic complex, the synthesis is particularly easy: it is sufficient to react a complex-metal with a bridging ligand in stoichiometric ratio, as illustrated in Figure 4.1a. To obtain a dinuclear heterometallic complex, the usual approach involves two steps (Figure 4.1b). First the preparation of a mononuclear complex-ligand is performed by reacting a metal precursor with an excess of the ligand. During this step dinuclear homometallic byproducts are unavoidably formed, but the desired mononuclear complex-ligand can be easily isolated by column chromatography (see below). In a following step, the second metal is added, so that only the dinuclear heterometallic species can be obtained. In the case of Ru(II) and Os(II) complexes of chelate polypyridine ligands, no scrambling of metals is usually found in the experimental conditions used for the synthesis. To obtain rutheniumosmium heterometallic complexes of bpy-type bridging ligands, it is convenient to prepare in the first step the mononuclear osmium complex. There are at least two advantages in choosing this procedure: (i) as osmium is less reactive than ruthenium, in the first step the yield of unwanted dinuclear homometallic compounds is minimized; and (ii) the major reactivity of the ruthenium complex-metals allows the use of milder conditions to obtain the dinuclear species. With tpy-type ligands, the reverse order is

 $\bigcirc = M$; $\neg W_{\neg} = 2,3$ -dpp; $\mid = bpy$ or big

Figure 4.2. Schematic representation of the synthesis of decanuclear compounds.⁹⁶

employed, preparing at first the ruthenium mononuclear ligand complex.^{71,97}

Polynuclear complexes of higher nuclearity can be obtained with this strategy if suitable polynuclear building blocks are available. An example is illustrated in Figure 4.2, where a mononuclear complex-ligand having three free chelating sites is reacted with 3 equiv of a trinuclear complex-metal, thus forming a decanuclear species. By a clever choice of the reaction partners it is possible to obtain compounds where different metals and ligands can be located in the desired position of the supramolecular structure (section 6.2.3).^{95,96}

Recently the divergent iterative approach, well known in organic synthesis,98-100 has been successfully extended to prepare polynuclear complexes containing up to 22 metal centers using 2,3-dpp as bridging ligand.^{101,102} This kind of approach requires the availability of a bifunctional species; in the field of coordination chemistry, this species should be a complex which can behave both as a ligand and as a metal, such as [Ru(2,3-dpp)₂Cl₂] (Figure 4.3a). Unfortunately a species like this is unavoidably selfreactive under the preparative conditions because the free chelating sites of one molecule would substitute the labile ligands on another molecule, leading to compounds of uncontrolled nuclearity. The only safe way to carry on a divergent synthesis must be based on species where one of the two functions is temporarily blocked. This has been achieved by methylation of 2,3-dpp¹⁰³ at one pyridyl nitrogen, to obtain the "protected" ligand 2,3-Medpp+. This allowed the easy, high yield (90%) preparation of the complexmetal $[Ru(2,3-Medpp)_2Cl_2]^{2+}$, where the complex-ligand ability is inhibited (Figure 4.3a). The protection was proved to be stable under the conditions employed for the successive reactions of [Ru(2,3- $Medpp)_2Cl_2]^{2+}$ as a complex-metal. Furthermore, it was possible to set up a demethylation procedure fully compatible with the stability of coordinate bonds,¹⁰³ in order to restore the presence of free chelating sites, that is the complex-ligand ability.

The divergent synthetic approach, summarized in Figure 4.3b, has allowed the preparation of large dendrimer-shaped polynuclear complexes.¹⁰² Reaction of the mononuclear complex-ligand [Ru(2,3-dpp)₃]²⁺ with the complex-metal [Ru(2,3-Medpp)₂Cl₂]²⁺ in a 1:3 molecular ratio leads to a tetranuclear complex (first dendrimer generation) which in its periphery contains six protected chelating sites. Demethylation of this species restores its ligand ability and yields a tetranuclear complex which can play the role of complex-ligand. Further reaction with [Ru(2,3-Medpp)₂Cl₂]²⁺ in 1:6 molecular ratio

Figure 4.3. (a) Schematic representation of the bifunctional $[Ru(2,3-dpp)_2Cl_2]$ and monofunctional $[Ru(2,3-Medpp)_2Cl_2]^{2+}$ complexes and (b) divergent synthetic strategy to obtain polynuclear metal complexes of dendrimer shape.^{101,102}

leads to a protected decanuclear compound (second dendrimer generation). The process in principle could lead to further generations, until eventual saturation¹⁰⁴ of the dendrimer surface takes place. This iterative synthetic strategy (Figure 4.3b) is characterized by a *full, step-by-step control of the growing process.* Therefore, different building blocks containing different metals and/or ligands can be introduced at each step. Moreover, each deprotected compound of the divergent synthetic approach can be used as a ligand core in convergent synthetic processes with complex-metals carrying terminal ligands, to yield *sterile* dendrimers of higher generation.¹⁰²

4.2. Purification and Characterization

Chromatography is the best purification method for polynuclear complexes. The choice of the support depends on the desired product. Indeed one has to consider that in the synthesis of precursor complexmetal or complex-ligand species, byproducts of higher nuclearity are also formed, due to the presence in the target molecules of reactive sites (labile ligands or free chelating sites). On the other hand, in the reaction between complex-ligands and complex-metals, the byproducts (precursors and partially unreacted species) are constituted by lower nuclearity species with respect to the desired products. In any case the problem is the separation of species having different charge and/or size. If one needs the species of lower charge and/or smaller size, alumina and silica gel can be used; recently, also ion exchange resins have been profitably employed for complexes with charge up to 8+. Otherwise, if the target product is the higher charged and/or bigger species, size exclusion resins can be used.

Chromatographic techniques have been utilized so far mainly on column; the development of analogous HPLC methods¹⁰⁵ will certainly assist in solving the purification problems.

Characterization of very large molecules is always a difficult task.¹⁰⁴ For neutral compounds, techniques based on colligative properties can be used to determine the molecular mass. Polynuclear complexes like those reported in this review, however, are often charged species, and the use of the above techniques is not advisable, because of the presence of counterions. New mass spectrometry techniques, developed during the last few years, promise to be quite useful for the characterization of polynuclear transition metal complexes. In particular, fast-atom bombardment,^{106,107} electrospray ionization,^{108–110} and matrix-assisted laser desorption ionization mass spectrometry have been successfully employed.

The presence of geometrical and optical isomers in complexes containing bpy-type ligands (section 3) makes difficult the structural investigation of these species by NMR technique, because the numerous ¹H and ¹³C signals of the different ligands are multiplied by the number of isomers.

To some extent structural information can be obtained from the NMR spectrum of the transition metals, such as ⁹⁹Ru.^{111,112} However, because the ruthenium NMR signals are very broad, the obtainable information will be limited in most of the cases to the knowledge of the number of metal ions in the molecule.

More information from NMR analysis can be obtained when the bpy-type ligands carry aliphatic substituents because the NMR signals of such groups are in a clear region of the spectrum and can be easily distinguished.^{102,113}

5. Redox Behavior

As pointed out in section 2.2.1, a supramolecular polynuclear complex is made of molecular components with definite individual properties. To rationalize the redox behavior of these species it is therefore necessary to take into account the redox properties of the individual molecular components, how these properties are embodied in the supramolecular structure, and which new properties originate. Although only a few papers report accurate comparisons between the electrochemical properties of polynuclear complexes and those of the parent mononuclear units, some considerations can be made.

5.1. Properties of Molecular Components

From a general viewpoint, the redox processes featured by the molecular components are maintained in the supramolecular structure, although some changes in the potential values may occur. The extent of these changes depends on the communication ability of the bridging ligand. If the bridging ligand does not allow substantial electronic communication, the connected units maintain in the supramolecular structure their intrinsic redox properties. For example, in the ligand $4Mebpy-E4_{A}$ bpy4Me (Table 9.20B) two bipyridines are weakly coupled by an ethylene spacer. As a consequence, the dinuclear complex $[(bpy)_2Os(\mu-4Mebpy-E4_A-bpy-$ 4Me)Os(bpy)₂]⁴⁺ features a two-electron oxidation wave due to simultaneous one-electron oxidation of the two osmium moieties at the same potential at which the mononuclear complex [(bpy)₂Os(4Mebpy-E4_A-bpy4Me)]²⁺ exhibits its one-electron, metalcentered oxidation wave. Analogously, the reduction potentials remain unchanged on passing from the mononuclear to the dinuclear species.¹¹⁴

When the bridging ligand allows substantial electronic communication, only an estimate of the redox properties of a polynuclear complex can be made from the properties of the mononuclear parent complexes. As an example, let us consider the bridging ligand bpym (Table 9.14B). The dinuclear complex [(bpy)₂Ru- $(\mu$ -bpym)Ru(bpy)₂]⁴⁺ features two distinct metal-centered one-electron oxidation waves at +1.53 and +1.69 V vs SSCE,¹¹⁵ whereas the mononuclear complex [(bpy)₂Ru(bpym)]²⁺ is oxidized at +1.40 V.¹¹⁶ One can see that in the dinuclear complex (i) the first oxidation of ruthenium occurs at more positive potential than in the mononuclear parent compound,

as coordination of a second ruthenium ion lowers the electronic density on the bridging ligand (and, as a consequence, on the coordinated metals) and (ii) the second oxidation is shifted to even more positive potential as oxidation of the first ruthenium ion further reduces the electronic density of the system. As far as the reduction of the bridging ligand is concerned, the potential shift is even larger, as indicated by the comparison between the reduction potential of bpym in the dinuclear (-0.41 V vs SSCE)¹¹⁵ and in the mononuclear complex (-1.02 V).¹¹⁶

The bridging ligands discussed above represent two limiting cases of how the communication ability of the bridge may influence the redox behavior of the individual components in a supramolecular species. As mentioned in section 2.2.3.1, it should be recalled that even an electronic interaction not measurable from electrochemical experiments ($\Delta V \leq 10-20$ mV, i.e., 80-120 cm⁻¹) can be strong enough to permit very fast intercomponent energy- and/or electron-transfer processes (section 6).

5.2. Supramolecular Properties

Even a cursory examination of the electrochemical data reported in section 9 shows that processes involving more than one electron are very common in polynuclear species. This peculiarity originates from the fact that on increasing nuclearity several equivalent noninteracting units are often incorporated in the same supramolecular array. It has been shown¹¹⁷ that species containing a number of identical noninteracting units exhibit current-potential responses having enhanced current intensity, but the same shape as that obtained with the parent isolated components.

The above-mentioned $[(bpy)_2Os(\mu-4Mebpy-E4_A$ $bpy4Me)Os(bpy)_2]^{4+}$ complex is an example of a dinuclear species where the bridging ligand does not allow an electrochemically sizeable electronic interaction. In fact the two metal ions are oxidized at the same potential (bielectronic wave). Multielectron processes can also be observed in polynuclear complexes employing bridging ligands that allow electronic communication when the equivalent electroactive units do not share the same bridging ligand; indeed as a practical rule one can consider that components not sharing the same bridging ligand are substantially noninteracting. A remarkable example of a multielectron oxidation process is illustrated by the 22-nuclear complex $[Ru{(\mu-2,3-dpp)}[Ru{(\mu-2,3-dpp)}]$ dpp)-Ru{(*µ*-2,3-dpp)Ru(bpy)₂}₂]₂}₃]⁴⁴⁺ (Table 9.49B).¹⁰² This complex exhibits a 12-electron oxidation wave attributed to the simultaneous one-electron oxidation of the 12 equivalent, noninteracting peripheral metalbased units. It is worth noting that the same peripheral unit, $(\mu-2,3-dpp)Ru(bpy)_2^{2+}$, is oxidized at the same potential also in the analogous tetranuclear $([Ru{(\mu-2,3-dpp)Ru(bpy)_2}_3]^{8+})$ and decanuclear [Ru- $\{(\mu-2, 3-dpp)Ru[(\mu-2, 3-dpp)Ru(bpy)_2]_2\}_3]^{20+}$ compounds (Table 9.49B).¹⁰² This shows that the electrochemical properties of a certain unit depend only on the neighboring units, regardless of the nuclearity and of the overall electric charge of the supramolecular structure. The presence of multielectron processes makes such polynuclear complexes very attractive in view of their possible application as multielectrontransfer catalysts.7,15

6. Intercomponent Electron- and Energy-Transfer Processes. Representative Examples

In the polynuclear complexes dealt with in this review it is possible to identify components which can undergo photoexcitation independently from one another (Scheme 2.1). The excited component can then give rise to intercomponent energy- or electrontransfer processes, in competition with intracomponent decay. For most of the components which constitute the examined systems, the lifetime of the lowest excited state is long enough to allow the occurrence of energy or electron transfer to nearby components when suitable energetic and electronic conditions are satisfied. This is not usually the case for upper excited states, which decay very rapidly (picosecond time scale) to the lowest excited state within each component.

Photoinduced electron- or energy-transfer processes take place in several polynuclear complexes listed in section 9. Since a systematic discussion of these processes cannot be given in this article for space reasons, we will only present a few typical cases. For details and a more exhaustive treatment the reader can refer to the original papers or to some recent reviews.^{4,7,118,119} General background on these processes has been presented in sections 2.2.3.1 and 2.2.3.2. We would also like to recall that intercomponent electron and energy transfer are very important processes for the design of devices capable to perform useful light-induced functions.^{7,16}

6.1. Intercomponent Electron Transfer

We present two recent, representative examples dealing with (i) the role played by electronic coupling and driving force in determining the rate constants of photoinduced electron transfer across a rigid spacer, and (ii) photogenerated electron collection at a single site of a polynuclear array.

6.1.1. Photoinduced Electron Transfer across a Rigid Spacer

The design of suitable systems for detailed mechanistic studies of photoinduced electron-transfer processes poses difficult problems. Since the parameters which govern the reaction rate (electronic coupling, reorganizational energy, free energy change) depend on the distance between donor and acceptor, one would need modular rigid structures, which are very difficult to synthesize. In recent years several efforts have been made in this direction and some interesting families of compounds have been studied (section 3).

A typical case is that of the dinuclear mixedvalence complexes based on the rigid bpy-E5_A-bpy bridging ligand.¹²⁰ The structural formulas of these complexes are shown in Figure 6.1. The electrochemical properties (Table 9.25B) show that in these mixed-valence systems (section 2.2.2) the energy of vibrational trapping noticeably exceeds the electronic interaction between the two metal-based chro-

Ruⁿ.A.Ruⁿ (bpy)2Ru(bpy-E5A-bpy)Ru(bpy)25 (bpy)2Os(bpy-E5A-bpy)Os(bpy)25+ (bpy)₂Ru(bpy-E5_A-bpy)Os(bpy)₂⁵⁺

Os^{II}.A.Os^{III} Ruⁿ.A.Os^m

Figure 6.1. Schematic representation of mixed-valence dinuclear complexes of the bpy-E5_A-bpy bridging ligand. The abbreviations used are also shown.¹²⁰

mophores, so that a $[(bpy)_2M^{II}(bpy-E5_A-bpy)]^{2+}$ and a $[(bpy-E5_A-bpy)M^{III}(bpy)_2)]^{3+}$ component can be identified. The M^{II}-based unit, when excited, plays the role of electron donor, and the M^{III}-based one plays the role of electron acceptor. The lowest excited state of the M(II)-based component is a long-lived, luminescent ³MLCT level. Electron transfer from such an excited state to the M(III)-based component leads to the formation of the mixed-valence M^{III}·A·M^{II} isomer of the M^{II}·A·M^{III} starting compound (Figure 6.2).

The electron-transfer processes taking place in *Ru^{II}·A·Os^{III}, *Ru^{II}·A·Ru^{III}, and *Os^{II}·A·Os^{III} are characterized by a different exoergonicity (1.62, 2.06, and 1.71 eV, respectively). The extent of the electronic coupling is very small and very similar for the three processes, since in each case a π^* electron substantially localized on a bpy ligand of the M^{II}-based excited unit is transferred to a t_{2g} orbital of the oxidized metal of the other unit. The reorganizational barrier to electron transfer should also be the same in each case, since each process implies an electron transfer from a 2+ excited state to a 3+ ground state. Therefore, these three processes constitute a homogeneous family.

In the Ru^{II}·A·Os^{III} mixed-metal compound (Figure 6.2a), a thermal back-electron-transfer reaction takes place after formation of the Ru^{III}·A·Os^{II} isomeric species. In this reaction electron transfer takes place from a t_{2g} orbital of Os^{II} to a t_{2g} orbital of Ru^{III}, so that the electronic factor should be somewhat different from that of the electron-transfer quenching reactions in the *M^{II}·A·M^{III} species. As far as the reorganizational barrier is concerned, the difference is expected to be very small.

The values of the experimental rate constants, free energy changes, and estimated intrinsic barriers for the four electron-transfer processes are gathered in Table 6.1, together with the calculated electronic factor ν (obtained from eq 2.16) and electronic interaction energy H (eq 2.15). One can see that the interaction energy is practically constant for the three "homogeneous" reactions, while it is considerably smaller for the back-electron-transfer reaction involving Ru^{III}·A·Os^{II}. Figure 6.3 shows a log k vs ΔG° plot for the four electron-transfer processes. A Marcus-type curve obtained from the classical eq 2.16 by using the parameters $\lambda = 1.4$ eV and H = 8 cm⁻¹ is also shown (dashed line). It can be noticed that the fitting is not fully satisfactory even in the case of the three homogeneous excited-state electron-transfer processes *a*, *b*, and *c*. It is well known, in fact, that the classical treatment neglects the role played by

Figure 6.2. Energy level diagrams showing the photoinduced electron-transfer processes in Ru^{II} ·A·Os^{III} (a), Ru^{II} ·A·Ru^{III} (b), and Os^{II}·A·Os^{III} (c). Key: full line, excitation; dashed line, luminescence; wavy line, radiationless decay.¹²⁰

 Table 6.1.
 Experimental Rate Constants and Related Parameters for Photoinduced Electron-Transfer Processes

 in the Compounds Shown in Figure 6.1

	k, s ⁻¹	ΔG° , eV	λ_{i} , eV	λ_{o} , eV	$ u,^a \mathbf{s}^{-1}$	H , $^a \mathrm{cm}^{-1}$
$*Ru^{II} \cdot A \cdot Ru^{III} \rightarrow Ru^{III} \cdot A \cdot Ru^{II}$	$1.1 imes 10^9$	-2.06	0.1	1.3	$2.3 imes10^{10}$	10
$^{*}Os^{II} \cdot A \cdot Os^{III} \rightarrow Os^{III} \cdot A \cdot Os^{II}$	$5.0 imes10^9$	-1.71	0.1	1.3	$9.8 imes10^9$	7
$*Ru^{II} \cdot A \cdot Os^{III} \rightarrow Ru^{III} \cdot A \cdot Os^{II}$	$8.7 imes10^9$	-1.62	0.1	1.3	$1.3 imes10^{10}$	8
$Ru^{III} \cdot A \cdot Os^{II} \rightarrow Ru^{II} \cdot A \cdot Os^{III}$	$1.0 imes10^{6}$	-0.44	0	1.3	$3.2 imes 10^8$	1

^a Classical treatment, eqs 2.15 and 2.16.

Figure 6.3. log k vs ΔG° for the electron-transfer reactions shown in Figure 6.2 (Table 6.1). Key: a, b, and c indicate the k values found for the excited-state electron-transfer processes shown in Figure 6.2a–c, respectively; a' indicates the value found for the back-electron-transfer reaction shown in Figure 6.2a. The dashed curve has been obtained by using the classical Marcus treatment (eq 2.16). The full line curve corresponds to the treatment based on eq 2.19.

high-energy frequency vibrations as accepting modes (section 2.2.3.1). Equation 2.20 can be used to express the nuclear factor in order to better fit the experimental results. Using eqs 2.20 and 2.19 with $\lambda_0 = 1.3 \text{ eV}$, $H = 8 \text{ cm}^{-1}$, and the average values hv_i = 1400 cm⁻¹ and S = 1.25, the full line of Figure 6.3 has been obtained. The fitting is good for the three homogeneous excited-state electron-transfer reactions *a*, *b*, and *c*, whereas point *a'*, which corresponds to the back electron-transfer reaction in the Ru^{II}·A·-Os^{III} system, cannot be fit because of the different electronic factor.

6.1.2. Photoinduced Electron Collection

The design of an efficient photoinduced electrontransfer process in a supramolecular structure is only

Figure 6.4. Schematic representation^{1,124} (a) and an example¹²⁵ (b) of a photochemical molecular device for photoinduced electron collection.

a step toward photochemical conversion of solar energy. Photoinduced electron transfer is in fact a *one-electron* process, whereas all the chemical reactions which are expected to be involved in artificial solar energy conversion schemes (e.g., water splitting) are *multielectron* processes.^{16,119,121–123} Progress in this field is therefore related to the design of systems where components capable of causing photoinduced electron-transfer processes can be coupled with components capable of storing electrons and using them in multielectron redox processes.

The schematic diagram shown in Figure 6.4a shows a photochemical device for photoinduced electron collection.^{1,124} In that scheme, Pel are electron-

transfer photosensitizers, Sel an electron store component, D (sacrificial) electron donors, C rigid bridges, and A_2 a two-electron reduced product (e.g., H_2 starting from 2H⁺). The function of each Pel is that of harvesting light energy in order to transfer an electron to Sel, which must have the ability to store two electrons in order to perform the two-electron redox process that leads to the desired product.

A mixed-metal trinuclear complex capable of performing the above-mentioned function has recently been reported.¹²⁵ The trimetallic species has formula $[{(bpy)_2Ru(\mu-dpb)}_2IrCl_2]^{5+}$ (for a structural representation, see Figure 6.4b). In this compound, the two $(bpy)_2Ru(\mu - dp\bar{b})^{2+}$ moieties, which absorb in the visible spectral region, play the role of Pel and the $(\mu$ $dpb)_2IrCl_2^+$ unit can play the role of Sel. $[Ir(dpb)_2]$ Cl_2 ⁺ is in fact a catalyst for the electrochemical reduction of carbon dioxide to formate.¹²⁶ By using triphenylamine or dimethylaniline as sacrificial donors, it has been shown that $[{(bpy)_2Ru(\mu-dpb)}_2IrCl_2]^{5+}$ gives rise to a stable, reversible, doubly reduced species via the occurrence of two successive sequences of the following events: (i) light excitation of the peripheral Ru(II)-based chromophores; (ii) reduction of the central Ir(III)-based moiety by photoinduced electron transfer from the excited Ru(II)-based components; (iii) regeneration of the Ru(II)-based chromophores by oxidation of the sacrificial donor. In the doubly reduced species, the two added electrons are localized on the two bridging ligands of the central Ir(III)-based unit.

In spite of the low quantum yield of the photoreduction process (0.0015, in acetonitrile solution),¹²⁵ this system is interesting because it demonstrates the feasibility of photoinduced electron collection.

6.2. Intercomponent Energy Transfer

Electronic energy transfer in polynuclear metal complexes can be exploited for light harvesting (antenna effect). In this section we will briefly discuss this topic.

Generally speaking, an artificial antenna is a multicomponent system (Figure 6.5) in which several molecular components absorb the incident light and channel the excitation energy to a common acceptor component.⁷

Figure 6.5. Schematic representation of an artificial antenna for light harvesting.¹⁶

Figure 6.6. (a) A small antenna made of a trinuclear compound 131 and (b) a chainlike antenna. 132

Toward the development of artificial antenna systems based on transition metal complexes, one line of trend is to assemble very large numbers of molecular components in more or less statistical ways. For example, photon-harvesting polymers are being developed^{23,127} in which rapid energy migration among pendant chromophoric groups is observed under certain conditions. Although very interesting, such systems, as well as the beautiful porphyrin-based antenna arrays,^{128,129} are outside the scope of this review.

Recent developments in the field of classic polynuclear complexes have shown that synthetic control of the position of the various components in the supramolecular array can be used to create a gradient for energy transfer in a predetermined direction. Most of the work in this area has been reviewed elsewhere.^{4,16,130} We will only recall a few examples and some recent developments.

6.2.1. Small Antennas

Cyano-bridged complexes of d⁶ metals have been used in the design of some simple antenna systems. An example is the trinuclear complex shown in Figure 6.6a.^{118,131} In this system, because of the combined effects of the N-bonded bridging cyanides and of the carboxylate groups on the ligands, the lowest energy excited state is that of the central unit. Light energy absorbed by the peripheral units is efficiently funneled to the central one, as demonstrated by emission measurements¹³¹ and by timeresolved resonance Raman techniques.¹³² As simple as they are, antennas of this type have proven useful in a practical system for conversion of solar energy into electricity.^{118,131,133,134}

6.2.2. Chainlike Systems

For some practical purposes (e.g., to bind at an interphase with good surface coverage), one-dimen-

Figure 6.7. Ligands employed to obtain polynuclear complexes of large nuclearity.⁹⁵

sional antenna systems might be more convenient than branched ones. A one-dimensional antenna requires stepwise energy transfer along a chain of molecular components, and the maximum length of the system (i.e., number of components) depends critically on the driving force demand of each energytransfer step. The possibility of obtaining efficient energy migration along chainlike systems has been checked with the cyano-bridged pentanuclear species shown in Figure 6.6b.¹³⁵ This complex contains a Re-(I)-based molecular component, three doubly bridged Ru(II)-based molecular components (Ru¹, Ru², and Ru³), and a terminal Ru(II)-based molecular component (Ru⁴), with all the bridging cyanides oriented in the same way (N-end pointing toward the terminal Ru(II) center). By molecular design, the relative MLCT excited-state energy ordering in this system is expected to be $\text{Re}(I) > \text{Ru}^1(II) \ge \text{Ru}^2(II) \approx \text{Ru}^3(II)$ > Ru⁴(II). Indeed, emission studies indicate that efficient energy transfer takes place from the Re(I)based unit, presumably through several steps involving the intermediate units, down to the terminal Ru(II)-based unit.¹³⁵ Direct evidence for energy transfer between remote Re(I)- and Ru(II)-based chromophores has been obtained by time-resolved resonance Raman spectroscopy in a trinuclear analogue of the compound shown in Figure 6.6b, where labeling of the various components by isomorphous substitution of phen for bpy was used.¹³⁵ These results suggest that, in strongly coupled systems of this type, energy migration between *isoenergetic* adjacent molecular components takes place efficiently. The presence of (i) a higher-energy "stopper" on one end and (ii) a lower-energy "trap" at the other end are sufficient to give directionality to the overall process. Thus, relatively long-chain one-dimensional antenna systems can be conceived following these general design principles.

6.2.3. Dendrimers

An interesting series of polynuclear species of large nuclearity, which because of their shape can be called dendrimers or arborols, has been obtained using 2,3dpp and/or 2,5-dpp as bridging ligands, Ru(II) and/ or Os(II) as metal centers, and bpy or biq as terminal ligands (Figure 6.7).^{95,102,136} The structure of a decanuclear complex of this family is schematized in Figure 6.8. Following the modular synthetic strategy known as "complexes-as-metals/complexes-as-ligands" (section 4),⁹⁵ such polynuclear species can be obtained with a high degree of synthetic control in terms of the nature and position of metal centers, bridging ligands, terminal ligands. The energy of the lowest metal-to-ligand charge transfer (MLCT) excited state of each unit depends on metal and ligands in a wellknown and predictable way: $Os(bpy)_2(\mu-2,5-dpp)^{2+} \leq$ $Os(bpy)_2(\mu-2,3-dpp)^{2+} < Os(biq)_2(\mu-2,5-dpp)^{2+} \le Os^{-1}$ $(biq)_2(\mu-2,3-dpp)^{2+} < Os(\mu-2,5-dpp)_3^{2+} < Os(\mu-2,3-dpp)_3^{2+} < Os(\mu-2,3-dpp)_3^{$ $dpp)_3^{2+} < Ru(bpy)_2(\mu-2,5-dpp)^{2+} \leq Ru(bpy)_2(\mu-2,3 \begin{array}{l} dpp)^{2+} < Ru(biq)_2(\mu-2,5\text{-}dpp)^{2+} \le Ru(biq)_2(\mu-2,3\text{-}dpp)^{2+} \\ < Ru(bpy)(\mu-2,5\text{-}dpp)_2^{2+} \le Ru(bpy)(\mu-2,3\text{-}dpp)_2^{2+} < \end{array}$ $Ru(\mu-2,3-dpp)_{3}^{2+}$. Thus, the synthetic control translates into a high degree of control on the direction of energy flow within these molecules.

In the case of the tetranuclear compounds, all the four possible energy-migration patterns, schematized in Figure 6.9, have been obtained. Pattern *i* is found

Figure 6.8. Schematic view of the structure of the $[Ru{(\mu-2,3-dpp)Ru[(\mu-2,3-dpp)Os(bpy)_2]_2}_3]^{20+}$ decanuclear complex. N–N stands for bpy.⁹⁶

Figure 6.9. Energy-migration patterns in tetranuclear compounds.^{137–140} Empty and full labels indicate Ru^{2+} and Os^{2+} , respectively. In the peripheral positions, circles and squares indicate $M(bpy)_2$ and $M(biq)_2$ components, respectively. For the bridging ligands: wavy lines, 2,3-dpp; straight lines, 2,5-dpp.

for L = bpy, BL = 2,3-dpp, and $M = Ru^{2+}$. In such a complex, the three peripheral units are equivalent and their lowest excited state lies at lower energy than the lowest excited state of the central unit.^{137,138} The reverse symmetric pattern *ii* is observed for L = bpy, BL = 2,3-dpp, $M_d = Os^{2+}$, and $M_a = M_b = M_c =$ Ru²⁺. To channel energy toward a single peripheral unit (pattern *iii*) a compound with L = bpy, $BL_a =$ 2,5-dpp, $BL_b = BL_c = 2,3$ -dpp, $M = Ru^{2+}$ was designed and synthesized.¹³⁹ Since 2,5-dpp is easier to reduce than 2,3-dpp, the $Ru \rightarrow BL CT$ excited state of the M_a-based building block is lower in energy than the $Ru \rightarrow BL$ CT state of the building blocks based on M_b and M_c . On the other hand, the lowest excited state of the central building block is higher in energy than the lowest excited state of all the peripheral ones. Thus, energy transfer from the M_d-, M_b-, and M_c-based building blocks to the M_a-based one is exoergonic, but the energy-transfer process from the M_{b} - and M_{c} -based units to the M_{a} -based one must either occur directly or overcome a barrier at M_d. The luminescence results show that the only emitting level is that based on M_a and that energy transfer is almost 100% efficient. The migration pattern shown by *iv* was obtained for a compound with $L_a = L_{a'} =$ biq, $L_b = L_{b'} = L_c = L_{c'} = bpy$, BL = 2,3-dpp, and $M = Ru^{2+.140}$ Since the energy level of the M_d -based building block is (slightly) higher than that of the Mabased one, the migration process must again overcome an energy barrier.

A variety of energy-migration patterns have also been obtained for hexanuclear compounds of the same family.¹⁴¹

The decanuclear complex shown in Figure 6.8⁹⁶ is made so that the energy absorbed by all the units in the complex flows, via efficient intercomponent energytransfer processes, from the center to the periphery of the complex, where it is reemitted by the Os(II)containing units as near-infrared luminescence.¹⁴² Several other synthetically predetermined energymigration patterns have been obtained in similar decanuclear species, simply by using different combination of metals and ligands (Figure 6.10).⁹⁶

As we have seen in section 4, the "complexes-asmetals/complexes-as-ligands" synthetic approach can be extended to obtain even larger dendrimers. Most of the work has so far been focused on compounds

Figure 6.10. Schematic representation of the energytransfer processes in decanuclear compounds.⁹⁶ For the graphic symbols, see caption to Figure 6.9.

containing Ru(II) and Os(II). However, synthetic control of the energy gradient in larger structures, in order to obtain energy transfer according to predetermined patterns, will probably require the use of more than two different metals. This is a difficult task since for each family of metals, specific types of ligands must be chosen in order to assure chemical stability and to confer the desired excited-state and redox properties. For example, with metals like Rh-(III), Ir(III), Pd(II), Pt(II), and Pt(IV), N-N (bipyridine-type) chelating ligands are not fully satisfactory, whereas $N-C^-$ (cyclometalating) chelating ligands give rise to stable and interesting species.143 By using such cyclometalating ligands, the scope of the "complexes-as-metals/complexes-as-ligands" synthetic strategy can be noticeably extended. As a first step along this direction, the synthesis and characterization of some tetranuclear bimetallic complexes involving Rh(III)- and Ir(III)-based units which contain the cyclometalating phenylpyridine anion (ppy⁻) as terminal ligand have been prepared.144 Several other dendrimers based on metal complexes have also been prepared.145-149

7. Conclusions and Perspectives

In the last few years a great number of polynuclear transition metal complexes have been synthesized. Such compounds have usually well-defined composition and, in several cases, present a modular structure since they can contain repetitive metal-based components (see, e.g., Figures 4.3, 6.6, and 6.8) and/or spacers made of repetitive units (see, e.g., Figure 3.4). Research in the field of polynuclear transition metal complexes can give an important contribution to the development of modular chemistry^{104,150–161} and to the bottom-up design of nanostructures.^{162–164}

When interaction between the metal-based components is weak, polynuclear transition metal complexes belong to the field of supramolecular chemistry. At the roots of supramolecular chemistry is the concept that supramolecular species have the potential to achieve much more elaborated tasks than simple molecular components: while a molecular component can be involved in simple *acts*, supramolecular species can perform *functions*.^{1,3,6,7,13,16} In other words, supramolecular species have the potentiality to behave as molecular devices. Particularly interesting molecular devices are those which use light to achieve their functions. Molecular devices which perform *light-induced functions* are called *photochemical molecular devices (PMD)*.^{1,124} Luminescent and redox-active polynuclear complexes as those described in this article can play a role as PMDs operating by photoinduced energy- and electrontransfer processes.

The tables given in section 9 report the luminescence and redox properties of as many as 435 complexes, 110 of which have nuclearity equal or larger than three. These numbers are impressive, especially if we consider that only 15 dinuclear luminescent Ru(II) complexes were reported in a review article published in 1988,²¹ and less than 70 luminescent polynuclear complexes (about 20 of which with nuclearity equal or larger than three) are listed in a 1990 review on the photochemistry and photophysics of polynuclear complexes.⁴ A closer inspection of the compounds displayed in the tables of section 9, however, shows that this field is still in its infancy. In particular, most of the building blocks used so far are based on Ru, Re, and Os, and the ligands used are mainly of the polypyridine family. Furthermore in several cases the structure of the supramolecular array is not well defined because of the presence of flexible bridging ligands. Substantial progress has to be made in the design of new luminescent and redox-active building blocks and in the synthesis of new modules to construct spacers having well-defined structures (rods, rings, ribbons, etc.) and properties (insulating, conductive, photosensitive, etc.). The development of this field will be strictly connected with a more extensive use of theory and modeling of structural design and properties. Substantial benefit will also come from improvement of experimental techniques (like MS FAB, ESMS, etc.) capable of characterizing large and electrically charged arrays.

Chemical Reviews, 1996, Vol. 96, No. 2 779

4Mebpy-S42-Cp

(Table 9.16)

8. List of the Bridging Ligands

4Mebpy-S4n-bpy4Me (Table 9.17) 4Mebpy-S4_A-bpy4Me, X = CH(OH)4Mebpy-S 4_B -bpy4Me, X = O 4Mebpy-S4_C-bpy4Me, X = S (Table 9.18) 4Mebpy-S4_D-bpy4Me, $X = (CH_2)_8$ 4Mebpy-S4_E-bpy4Me, $X = (CH_2)_3 N - (CH_2)_3$ ċн₃ (Table 9.19)

4Mebpy-E4_A-bpy4Me (Table 9.20)

4Mebpy-bd4-bpy4Me (Table 9.21)

4Mebpy-P4n-bpy4Me (Table 9.22)

4Mebpy-E4_B-bpy4Me (Table 9.23)

4Mebpy-ch4-bpy4Me (Table 9.24)

> bpy-E5_A-bpy (Table 9.25)

bpy-a-bpy (Table 9.26)

 $bpy-E4_{\rm C}$ (Table 9.15)

(Table 9.14)

Chemical Reviews, 1996, Vol. 96, No. 2 781

.

Balzani et al.

tpy-A-tpy

(Table 9.75)

Ph Ph Ph Ph

Ph

 $S(C_2H_5)_2$

(Table 9.84)

tppb (Table 9.83)

9. Tables of Photophysical and Electrochemical Data

This section contains tables on the photophysical and electrochemical data. Each table (part A, photophysical data, and part B, electrochemical data) refers to the complexes of a specific bridging ligand, whose structural formula and abbreviations are shown at the top of the table.

The succession of the tables is the same as that of the bridging ligands listed in section 8. In the formulas of the complexes the bridging ligand is

Table 9.1

shown in bold. For the sake of clarity, the μ symbol has been omitted. Within each table, the complexes are ordered by increasing nuclearity and atomic number of the metals.

The abbreviations used for the ligands, solvents, etc. are shown in section 10. Moreover, the following abbreviations are used: a = aerated solution; d = deareated solution; c = corrected spectrum; u = uncorrected spectrum; f = value estimated from a figure; i = irreversible process; [n] = number of exchanged electrons; BL = bridging ligand.

			A. Photophysi	cal Data					
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)
Rh ₂									
[(ppy) ₂ Rh(Cl) ₂ Rh(ppy) ₂]	CH_2Cl_2	393	7700						165
	Et/Met						461	93	165
$[(bzq)_2Rh(Cl)_2Rh(bzq)_2]$	CH_2Cl_2	410	8200						165
	Et/Met						484	2600	165
RhPd									
[(ppy) ₂ Rh(Cl) ₂ Pd(ppy) ₂]	CH_2Cl_2	455							165
	Et/Met						498	13.2	165
[(ppy) ₂ Rh(Cl) ₂ Pd(bzq) ₂]	CH_2Cl_2	408							165
	Et/Met						460	237	165
							484	2500	
Ir ₂					_				
$[(ppy)_2 Ir(Cl)_2 Ir(ppy)_2]$	CH_2Cl_2	484	1100	518 c	140 d				166
	Et/Met				_		483 с	4.8	166
$[(bzq)_2Ir(CI)_2Ir(bzq)_2]$	CH_2Cl_2	480	3100	550 c	1400 d				167
	Et/Met						510 с	30	167
[(ptpy) ₂ lr(Cl) ₂ lr(ptpy) ₂]	CH_2CI_2	482	1000	510 c	150 d				166
	Et/Met						490 c	5.2	166
[(mppy) ₂ Ir(CI) ₂ Ir(mppy) ₂]	CH_2CI_2	484	1400	520 c	60 d				166
	Et/Met						497 c	5.0	166

Cl-

Table 9.2

CN⁻ A. Photophysical Data Abs Em_{77K} Em_{R1} $\tau_{\rm RT}$ τ_{77K} $(M^{-1} cm^{-1})$ solvent Φ_{RT} ref(s) compound (nm)(nm) (ns) (nm)(µs) CrRu $[(NC)_5Cr(CN)Ru(bpy)_2(CN)]^{2-}$ DMF 496 ≈805 f $1.1 \times 10^{6} \, d \quad 8.5 \times 10^{-4} \, d$ 168 RuRh [(NC)(bpy)2Ru(CN)Rh(NH3)5]3+ $DMSO/H_2O^\dagger$ 430 8470 604 c 310 556 с 5.7 169 DMF/CHCl₃ 457 626 c 610 577 с 6.1 169 8940 [(NC)(bpy)₂Ru(CN)-DMSO/H₂O[†] 430 606 c 400 556 c 6.0 169 Rh(NH₃)₄(CN)]²⁺ DMF/CHCl₃ 455 630 c 630 578 c 6.25 169 [(NC)(bpy)2Ru(CN)-DMSO/H₂O[†] 620 c 10400 40. 220[‡] 5.0 429 554 c 169 Rh(NH₃)₄(Br)]²⁺ DMF/CHCl₃ 453 632 c 220 577 с 5.8 169 [(NC)(bpy)2Ru(CN)-DMSO/H₂O[†] 433 11700 631 c 350[§] 572 c 3.9[§] 169 60 Rh(NH₃)₄(I)]²⁻ DMF/CHCl₃ 458 650 c 590 c 5.3169 Ru₂ [(NC)(bpy)2Ru(CN)-AN 488 15400 714 c 120 d 630 c 1.6 170,171 Ru(bpy)₂(CN)]⁺ [(NC)(bpy)2Ru(CN)-AN 483 17600 700 c 400 d 592 c 4.6 170,171 Ru(phen)₂(CN)] [(NC)(phen)2Ru(CN)-AN 480 16600 715 с 95 132 Ru(bpy)₂(CN)] RuRe [(NC)(bpy)2Ru(CN)-AN 482 667 422 0.020 135 Re(phen)(CO)₃]⁺ RuPt [(NC)(bpy)₂Ru(CN)Pt(dien)]²⁺ DMF 460 \approx 7500 630 630 d 172 416 590 140 d 172 H_2O Re₂ [(CO)₃(bpy)Re(**CN**)-Re(bpy)(CO)₃]⁺ AN 580 c 245 173 CH₂Cl₂ 370 6610 571 c 395 173 EtOH 580 c 173 Et/Met 530 c 3.92 173 581 c 190 MeOH 173

Table 9.2 (Continued)

compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{c} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Cr ₂ Ru			10000				~~~		100
$\{(NH_3)_5 Cr(NC)\}_2$ -	DMSO/H ₂ O	390	12600	no emission			738	-	169
$\operatorname{Ru}(\operatorname{bpy})_2]^{\circ}$	DMF/CHCI ₃	408		not reported	≤ 40	0.0 10-4 1	680	78	169
$\{(NC)_5 Cr(CN)\}_{2^-}$	DMF	490	≈8500	≈810	$1.3 \times 10^{3} d$	$9.2 \times 10^{-4} d$			168
$\operatorname{Ku}(\operatorname{Dpy}_2)^*$	H_2O	454 440 ch	~10000	797 0	2 CO v 105 d	5 2 × 10-3 d			108
$[\{(INC)(Cyclam)Cr(CIN)\}_2^-$ Du(bpy), 14^+		440 SH	≈ 10000	722 0	$2.00 \times 10^{5} d$	$3.3 \times 10^{-3} d$			174,175
[I(NC)(cyclam)]		~390 370	~8000 ~7000 f	722 0	$2.40 \times 10^{5} \text{ u}$	$4.4 \times 10^{-3} \text{ a}$ 7 0 × 10 ⁻³ a			175
Cr(CN) $Pu(CN)$	H.O	370	~ 70001 6500	723 C	$9.0 \times 10^{-} a$ $3.00 \times 10^{5} a$	1.3×10^{-2} a			176
	1120	550	0300	122 0	5.00 × 10 a	1.5 × 10 a			170
$[\{(NC)(bpy)_2Ru(CN)\}_{2^-}$ Ru(bpy)_2] ²⁺	AN EtOH	478	21600	735 с	90 d		685 c	1.3	170,171 170,171
$[{(CN)(bnv)}_{Ru}(CN)]_{2}$	AN	536	10800	793 с	30 d		000 0	1.0	177,178
$Ru(dcbpvH_2)_2 ^{2+}$	EtOH	540	11400	795 с	30 d				177.178
15 2021	$H_2O(pH = 1)$	542	10400	820 с	20 d				177,178
	MeOH	536	10300	781 с	48 d				177,178
$\{(CN)(bpy)_2Ru(CN)\}_2$ -	AN	482	18300	723 с	122 d				177,178
$Ru(dcbpy)_2]^{2-}$	AN	485	22000	720 с	140 d		710 с		131,171
	EtOH	474	19900	724 с	145 d				177,178
	H_2O	526		760 с					131,171
	H ₂ O	520	13500	752 с	38 d				177,178
	(pH = 11)								
	MeOH	466	18300	733 с					177,178
$\{(H_2O)(bpy)_2Ru(NC)\}_2$ -	AN	486	10900	737 с	24 d				178
$\operatorname{Ku}(\operatorname{dcbpyH}_2)_2]^*$	ANT	100	10400	740 -	94 4				170
$[{(HO)(Dpy)_2Ku(INC)}_2^-$ Ru(dchpy)_2 ²⁻	AIN	498	16400	749 C	24 u				1/8
$[\{(CN)(dmbpy)_2Ru(CN)\}_2-Ru(dcbpyH_2)_2]^{2+}$	AN	540	11900	802 c	23 d				178
$[\{(CN)(dmbpy)_2Ru(CN)\}_2-Ru(dcbpy)_2]^2-$	AN	498	16300	728 с	83 d				178
$[\{(CN)((MeO)_2-bpy)_2Ru-(CN)\}_2Ru(dcbpyH_2)_2]^{2+}$	AN	510	8300	743 с					178
[{(CN)((MeO) ₂ -bpy) ₂ Ru- (CN)} ₂ Ru(dcbpy) ₂] ²⁻	AN	498	11000	718 с					178
$[{(CN)(phen)_2Ru(CN)}_2 - Ru(dcbpyH_2)_2]^{2+}$	AN	514	10000	750 с					178
$\begin{array}{l} [\{(CN)(phen)_2Ru(CN)\}_{2^-}\\ Ru(dcbpy)_2]^{2-} \end{array}$	AN	500	19400	764 с	45 d				178
$[\{(CN)(dcbpy)_2Ru(CN)\}_2-Ru(dcbpyH_2)_2]^{2-}$	EtOH	480	29000	700 с					178
$\begin{array}{c} \mathbf{Ru}_{2}\mathbf{Re} \\ [(NC)(bpy)_{2}Ru(\mathbf{NC})Ru-\\ (bpy)_{2}(\mathbf{NC})Re(phen)-\\ (CO)_{3}]^{2+} \end{array}$	AN	480		694	133	4.7×10^{-3}			135
RuRh ₂									
[(bpy)2Ru{(CN)-	$DMSO/H_2O^{\dagger}$	413	8160	576	40		543	8.4	169
Rh(NH ₃) ₅ } ₂] ⁶⁺	DMF/CHCl ₃	428		589	50		553	7.6	169
RuRe ₂									
$[(bpy)_2Ru\{(CN)\}$	AN			645 с	330	≈0.01			173
$Re(bpy)(CO)_{3}_{2}]^{2+}$	CH_2Cl_2	442	8060	643 с	465				173
	Et/Met						592 c	4.09	173
	MeOH			639 c	310				173
$[(dcbpyH_2)_2Ru\{(NC)-$	DMF	100	10000	670 c		0.000			173
$\operatorname{Re}(\operatorname{bpy})(\operatorname{CO})_{3}_{2}_{2}^{2}^{2}$	EtOH	492	12600	661 C	<40	≈0.002	055		173
	Et/Met	500		709 -			622 C		173
PuOs.	H_2O	500		702 C					173
$[(dchny)_{*}Bu\{(NC)_{*}$	AN	518	17400	~900					178
$Os(bnv)_2(CN)_2 ^{2-}$	AIN	510	17400	\sim 300					170
$[(dcbpy)_2Ru{(CN)-Os(bpy)_2(H_2O)}_2]^{2-}$	AN	510	20000	\approx 860					178
RuPt ₂									
[(bpy) ₂ Ru{(CN)-	DMF	426	≈8000 f	580	90 d		\approx 530 f		172
$Pt(dien)_2]^{4+}$	H ₂ O	408		580	60 d				172
Ru ₃ Re									
$[(NC)(bpy)_2Ru\{(NC)Ru-(bpy)_2\}_2(NC)Re(phen)-(CO)_3]^{3+}$	AN	479		694	149	$4.5 imes10^{-3}$			135
$\label{eq:linear_state} \begin{array}{l} \textbf{Zn}_2\textbf{Ru}_3 \\ [\{Zn(\textbf{NC})Ru(bpy)_2(\textbf{CN})\}_2 \\ Ru(bpy)_2]^{6+} \end{array}$	AN			690 с	160 d				132
$\begin{array}{c} \textbf{Ku}_4\textbf{Ke} \\ [(NC)(bpy)_2Ru\{(\textbf{NC})Ru-(bpy)_2\}_3(\textbf{NC})Re(phen)-(CO)_3]^{3+} \end{array}$	AN	477		694	127	$3.9 imes 10^{-3}$			135

Table 9.2 (Continued)

	B. Electroo	chemica	l Data		
compound	solvent	RE	E_{ox} , V [n] (site)	$E_{\text{red}}, V[n]$ (site)	ref(s)
$\frac{\mathbf{CrRu}}{[(NC)_5 Cr(\mathbf{CN})Ru(bpy)_2(CN)]^{2-}}$	DMF	SCE	+0.89 (Ru)	≈ -1.4 i (Cr)	168
$\frac{\mathbf{Ru}_{2}}{[(NC)(bpy)_{2}Ru(\mathbf{CN})Ru(bpy)_{2}(CN)]^{+}}$	AN	SCE	+0.74 (Ru-N),	-1.54 [2]	38,132,
	DMF DMF (-54 °C)	SCE SCE	+1.35 (Ru-C)	-1.54 [2] -1.47 [1], -1.53 [1], -1.74 [1], -1.83 [1], -2.44 [1], -2.52 [1], -2 78 [1] (all bny)	170 170 38
$[(NC)(bpy)_2Ru(CN)Ru(phen)_2(CN)]^+$	H ₂ O AN DMF H ₂ O	SCE SCE SCE SCE	+0.64 +0.75, +1.35 +0.64	-1.54 [2] -1.54 [2]	170 132,170 170 170
[(NC)(phen) ₂ Ru(CN)Ru(bpy) ₂ (CN)] ⁺	AN	SCE	+0.72, +1.35	-1.56 [2]	132
$[(NC)(bpy)_2Ru(CN)Rh(NH_3)_5]^{3+}$ $[(NC)(bpy)_2Ru(CN)Rh(NH_3)_4(I)]^{2+}$	AN AN	SSCE SCE	+1.00 [1] (Ru) +0.923	-1.695, -1.931	169 169
RuRe [(NC)(bpy) ₂ Ru(CN)Re(phen)(CO) ₃] ⁺	AN	SCE	0.94, +1.78 i		135
RuPt $[(NC)(bpy)_2Ru(CN)Pt(dien)]^{2+}$	DMF	SCE	+1.03	-1.62	172
$ \begin{array}{l} \mathbf{Re_2} \\ [(CO)_3(bpy)\mathrm{Re}(\mathbf{CN})\mathrm{Re}(bpy)(CO)_3]^+ \end{array} $	AN	SCE	+1.35 i (Re-N), +1.60 i (Re-C)	-1.29 (bpyRe-C), -1.41 (bpyRe-N)	173
$\begin{array}{l} {\bf Cr_2Ru} \\ [\{(NC)_5Cr({\bf CN})\}_2Ru(bpy)_2]^{4-} \\ [\{(NC)(cyclam)Cr({\bf CN})\}_2Ru(bpy)_2]^{4+} \end{array}$	DMF DMSO	SCE SCE	+0.84 (Ru) +1.35 i (Ru)	≈ -1.4 i (Cr) -1.44 (bpy), -1.58 (bpy), -1.82 i (Cr)	168 174
$[\{(NC)(cyclam)Cr(CN)\}_2Ru(CN)_4]$	H ₂ O	SCE	+1.13 i (Ru)	-1.34 i (Cr)	176
$[{(NC)(bpy)_2Ru(CN)}_2Ru(bpy)_2]^{2+}$	AN	SCE	$+0.66 (Ru_c),$ +1.19 (Ru _t),	-1.53 [3]	38,132, 170
	AN (-30 °C) DMF DMF (-54 °C)	SCE SCE SCE	+1.40 (Ru _t)*	$\begin{array}{c} -1.54 \ [2], -1.65 \\ -1.51 \\ -1.52 \ [1], -1.57 \ [1], \\ -1.63 \ [1], -1.80 \ [1], \\ -1.84 \ [1], -2.02 \ [1], \\ -2.57 \ [1], -2.62 \ [1], \\ -2.83 \ [1], -2.90 \ [1] \end{array}$	131 170 38
$[\{(CN)(bpy)_2Ru(CN)\}_2Ru(dcbpyH_2)_2]^{2+}$	H2O AN/H2SO4	SCE SCE	+0.53 +0.65 (Ru _c), +1.20 (Pu)∑	(all bpy) <-1.4	170 177,178
$[\{(CN)(bpy)_2Ru(CN)\}_2Ru(dcbpy)_2]^{2-}$	AN	SCE	$+0.68 (Ru_c),$ +1.20 (Ru _c),	<-1.4	177,178
	AN (-30 °C)	SCE	+1.20 (Ru _t) +0.54, +1.24, +1.58 i	-1.61 [2], -1.74	131
$[\{(H_2O)(bpy)_2Ru(\textbf{NC})\}_2Ru(dcbpyH_2)_2]^{4+}$	AN/H ₂ SO ₄	SCE	+1.581 +0.69 (Ru _c),	<-1.4	178
$[\{(HO)(bpy)_2Ru(\mathbf{NC})\}_2Ru(dcbpy)_2]^{2-}$	AN	SCE	$+0.30 (Ru_c),$ $\sim +1.0 (Ru_c) \nabla$	<-1.4	177,178
$[\{(CN)(dmbpy)_2Ru(\textbf{CN})\}_2Ru(dcbpyH_2)_2]^{2+}$	AN/H ₂ SO ₄	SCE	\sim + 1.0 (Ru _t) + 0.68 (Ru _c),	<-1.4	178
$[\{(CN)(dmbpy)_2Ru(CN)\}_2Ru(dcbpy)_2]^{2-}$	AN	SCE	\approx +0.80 (Ru _c), \approx +1.00 (Bu _c),	<-1.4	178
$[\{(CN)((MeO)_2\text{-}bpy)_2Ru(CN)\}_2Ru(dcbpyH_2)_2]^{2+}$	H ₂ SO ₄ 4 M	SCE	\approx +1.00 (Ru _t) ⁺ ≈+0.70 (Ru _c), \approx +0.00 (Ru _t) [∇]	<-1.4	178
$[\{(CN)(phen)_2Ru(CN)\}_2Ru(dcbpyH_2)_2]^{2+}$	AN/H ₂ SO ₄	SCE	$\sim +0.90 (\text{Ru}_{\text{c}})^{-1}$ +0.70 (Ru _c), $\sim +1.20 (\text{Ru}_{\text{c}})^{-1}$		178
$[\{(CN)(dcbpy)_2Ru(CN)\}_2Ru(dcbpyH_2)_2]^{2-}$	AN	SCE	\sim +1.20 (Ru _t) \sim +0.73 (Ru _c) $^{\circ}$		178
$[(bpy)_2Ru\{(CN)Rh(NH_3)_5\}_2]^{6+}$	AN	SSCE	+1.188 [1] (Ru)	-1.695, -1.931	169
$ \begin{array}{l} \mathbf{Ru_2Re} \\ [(NC)(bpy)_2Ru(\mathbf{NC})Ru(bpy)_2-\\ (\mathbf{NC})Re(phen)(CO)_3)^{2+} \end{array} $	AN	SCE	+0.76, +1.37, +1.74 i		135
$\frac{\mathbf{RuRe_2}}{[(bpy)_2Ru\{(\mathbf{CN})Re(bpy)(CO)_3\}_2]^{2+}}$	DMF	SCE	pprox+1.0 i (Ru),	-1.23 [2] (bpy-Re),	173
$[(dcbpyH_2)_2Ru\{(\textbf{NC})Re(bpy)(CO)_3\}_2]^{2+}$	DMF	SCE	≥+1.4 i (Re) +0.75 i (Ru) ≥+1.4 i (Re)	-1.57 (bpy-Ru) -1.30 [2] (bpy-Re), -1.70 (dcbpy)	173
$ \begin{array}{l} RuPt_2 \\ [(bpy)_2Ru\{(CN)Pt(dien)\}_2]^{4+} \\ Ru_3Re \end{array} $	DMF	SCE	+0.86	-1.50	172
$[(NC)(bpy)_2Ru\{(NC)Ru(bpy)_2\}_{2^-}(NC)Re(phen)(CO)_3]^{3+}$	AN	SCE	+0.75, +1.10, +1.63 i, +1.77 i		135
$[{Zn(NC)Ru(bpy)_2(CN)}_2Ru(bpy)_2]^{6+}$	AN	SCE	+0.75, +1.47, +1.64		132

786 Chemical Reviews, 1996, Vol. 96, No. 2

Balzani et al.

Table 9.2 (Continued)

compound	solvent	RE	E_{ox} , V $[n]$ (site)	E_{red} , V [<i>n</i>] (site)	ref(s)
$\begin{array}{l} \textbf{Ru_4Re} \\ [(NC)(bpy)_2Ru\{(\textbf{NC})Ru(bpy)_2\}_{3^-} \\ (\textbf{NC})Re(phen)(CO)_3]^{3^+} \end{array}$	AN	SCE	+0.73, +1.08, +1.34, +1.60 i, +1.77 i		135

[†] Absorption data in other solvent mixtures are given in the original papers. [‡] Biphasic decay. [§] Weak emission, probably due to $Ru(bpy)_2(CN)_2$. [□] **NC** isomer. [¶] Or its deprotonated forms. [¬] Ru_c and Ru_t stand for central and terminal Ru, respectively.

Table 9.3

		1	pyz _N	Ņ								
A. Photophysical Data												
compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)			
$\frac{\mathbf{Cr}_{2}}{[(CO)_{5}Cr(\mathbf{pyz})Cr(CO)_{5}]}$	$C_6 H_6{}^\dagger$	516		702 c		$0.6\times 10^{-4}d^{\ddagger}$			179,180			
Сгмо [(CO) ₅ Cr(руz)Мо(CO) ₅] CrW	$C_6 H_6{}^\dagger$	504		687 c		$1.4\times 10^{-4}d^{\ddagger}$			179,180			
$[(CO)_5Cr(\mathbf{pyz})W(CO)_5]$ Mo ₂	$C_6 H_6^{\dagger}$	514		707 с		$1.5 imes 10^{-4} d^{\ddagger}$			179,180			
$[(CO)_5Mo(\mathbf{pyz})Mo(CO)_5]$ MoW $[(CO)_Mo(\mathbf{pyz})W(CO)_1]$	$C_6H_6^{\dagger}$	484		675 с		$3.9 \times 10^{-4} d^{\ddagger}$			179,180			
$[(CO)_{5}W(\mathbf{pyz})W(CO)_{5}]$ W_{2} $[(CO)_{5}W(\mathbf{pyz})W(CO)_{5}]$		498 539	13600	741 c	153 d	$4.0 \times 10^{-4} d^{+1}$			179,180			
[(00)3(P J2)(00)3]	$CH_2Cl_2 C_6H_6^{\dagger}$	521 510	12800	730 c 722 c	103 d	$1.6 \times 10^{-4} \text{ d} \\ 5.0 \times 10^{-4} \text{ d}^{\ddagger}$			181,182 179,180			
	C_6H_6 C_6H_6	510 510	12000 12000	721 c 721 c	186 d 206 d	$4.4 imes 10^{-4} \mathrm{d} \ 5.0 imes 10^{-4} \mathrm{d} \ 7.0 imes 10^{-4} \mathrm$			183,184 181			
	C_7H_{14}/C_6H_6 2-Me-THF [§]	534 455	13500	759 C	284 a	7.0 × 10 * d	562 с 700 с	1.7, 11.3 8.7	181 184			
WRe [(CO):W(nvz)Re(CO):C]]	CH ₂ Cl ₂	486 sh		688 c	196 d	$1.59 \times 10^{-4} d$			182			
Re ₂	0112012	100 511		000 0	100 u	1.00 × 10 u			102			
[Cl(CO) ₄ Re(pyz)Re(CO) ₄ Cl]	CH_2Cl_2	466 sh		688 c	137 d	$3.03 imes 10^{-4} ext{ d}$			182			
$[(CO)_3(bpy)Re(\mathbf{pyz})Re(bpy)(CO)_3]^{2+}$ $[(CO)_3(Me_4phen)Re(\mathbf{pyz})-$ $Re(Me_4phen)(CO)_3]^{2+}$	AN AN	380 380		703 694	<20 60	${}^{<5 imes 10^{-4}}_{<5 imes 10^{-4}}$			185 185			
		B. Ele	ctrochemica	ıl Data								
compound	solven	t	RE E _{ox} ,	V [<i>n</i>] (si	te)	<i>E</i> _{red} , V [<i>n</i>]	(site)		ref(s)			

compound	solvent	RE	E_{ox} , V [n] (site)	$E_{\rm red}$, V [<i>n</i>] (site)	ref(s)
W ₂					
$[(CO)_5W(\mathbf{pyz})W(CO)_5]$	CH_2Cl_2	SCE	+1.26 i (W)	-1.21 [1] (BL), <-2.3 [1] (BL)	181-183
	CH ₂ Cl ₂ /DMF	SCE	+1.14 i (W), +1.26 i (W)	-0.94 [1] (BL), -1.45 [1] (BL)	181
	DMF	SCE	+1.00 i (W), +1.16 i (W)	-0.84 [1] (BL), -1.34 [1] (BL), -2.09 i (BL)	181
WRe					
$[(CO)_5W(\mathbf{pyz})Re(CO)_4Cl]$	CH_2Cl_2	SCE	+1.16 i (W), +1.82 (Re)	-0.90 [1] (BL), -1.24 [1] (BL)	182
Re ₂					
[Cl(CO) ₄ Re(pyz)Re(CO) ₄ Cl]	CH_2Cl_2	SCE	+1.73 (Re)	-0.47 i [1] (BL), -0.89 [1] (BL), -1.23 [1] (BL)	182
$[(CO)_3(bpy)Re(\mathbf{pyz})Re(bpy)(CO)_3]^{2+}$	DMSO	SCE	+1.78 i (Re)	-0.66 [1] (BL), -1.12 [2] (bpy), -1.28 [2] (Re)	185
[(CO) ₃ (Me ₄ phen)Re(pyz)- Re(Me ₄ phen)(CO) ₃] ²⁺	DMSO	SCE	+1.69 i (Re)	-0.69 [1] (BL), -1.35 i (Re)	185
[†] Absorption data in other solvents a	are given in the	original	papers. ‡ Excitatio	n wavelength dependent. § At 80 l	Κ.

Table 9.4

	4-	benzyl-py		\geq							
A. Photophysical Data											
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
FeRe [(Cp)Fe(4-benzyl-py)Re(bpy)(CO) ₃] ²⁺	AN			586 c	2.9 d				186		

Table 9.4 (Continued)

compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)
$\begin{array}{l} \textbf{RuRe} \\ [(Cp)Ru(\textbf{4-benzyl-py})Re(bpy)(CO)_3]^{2+} \\ [(Cp)Ru(\textbf{4-benzyl-py})Re(5,5'-dmbpy)(CO)_3]^{2+} \\ [(Cp)Ru(\textbf{4-benzyl-py})Re(Me_4bpy)(CO)_3]^{2+} \\ [(Cp)Ru(\textbf{4-benzyl-py})Re(deabpy)(CO)_3]^{2+} \end{array}$	AN AN AN AN	≈326 f	≈18600 f	586 c 561 c 540 c 523 c	225 d 960 d 907 d 890 d	0.051 d 0.16 d 0.15 d 0.041 d			186 186 186 186

Table 9.5

			btd, $X = S$ bsd, $X = Se$	N X							
A. Photophysical Data											
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)		
W ₂											
[(CO) ₅ W(btd)W(CO) ₅]	$C_6 H_6^{\dagger}$	648		>750	<5				187		
$[(CO)_5W(\mathbf{bsd})W(CO)_5]$	$C_6 H_6^\dagger$	670		>750	<5				187		
			B. Electrochem	nical Data							
compound	sol	vent	RE	<i>E</i> _{ox} , V [<i>n</i>]	(site)	$E_{\rm rec}$	d, V [<i>n</i>] (site)		ref(s)		
W ₂											
[(CO) ₅ W(btd)W(CO) ₅]	А	N	SCE			-0.	.53 [1] (BL)		187		
$[(CO)_5W(\mathbf{bsd})W(CO)_5]$	А	N	SCE			-0.	.47 [1] (BL)		187		

Absorption data in other solvents are given in the original paper.

Table 9.6

4,4'-bpy, R = H $Me_2-4,4'-bpy, R = CH_3$

compound	solvent	Abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
CrMo									
[(CO) ₅ Cr(4,4'-bpy)Mo(CO) ₅]	C ₆ H ₆	432 sh		602 c	767 d	$4.0 imes 10^{-5} d$			183
CrW						_			
$[(CO)_5Cr(4,4'-bpy)W(CO)_5]$	C_6H_6	436 sh		642 c	368 d	$6.2 \times 10^{-5} \mathrm{d}$			183
$[(CO)_{*}Mo(\mathbf{A}\mathbf{A}'_{*}\mathbf{b}\mathbf{p}\mathbf{x})Mo(CO)_{*}]$	C.H.	430 ch		606 c	547 d	$0.0 \times 10^{-5} d$			183
	$C_{6}II_{6}$	450 511		000 C	J47 U	9.9 × 10 ° u			105
$[(CO)_5M_0(4,4'-bpy)W(CO)_5]$	C ₆ H ₆	432 sh		651 c	428 d	$1.23 imes 10^{-4} ext{ d}$			183
Ru ₂									
[Cl(dpte) ₂ Ru(4,4'-bpy)- Ru(bpy) ₂ Cl ²⁺	AN/CH ₂ Cl ₂	$pprox 440~f^{\dagger}$	pprox15000 f [†]	706	51 d‡	$^{<2} imes 10^{-4} d$			188
[Cl(dpte) ₂ Ru(4,4'-bpy)- Ru ^{III} (bpy) ₂ Cl] ³⁺	AN/CH ₂ Cl ₂	pprox833 f [†]	${\approx}100~f^{\dagger}$	708	54 d [‡]	${}^{<}2\times10^{-4}d$			188
RuOs									
[(H ₂ O)(bpy) ₂ Ru(4,4'-bpy)- Os(tpy)(bpy)] ⁴⁺	$H_2O (pH = 5)$	$\approx \! 460 \ f$	\approx 25000 f	798 с	31 d	$8.5 imes 10^{-3} d$			189
[(HO)(bpy) ₂ Ru(4,4'-bpy)- Os(tpy)(bpy)] ³⁺	$H_2O (pH = 11.9)$			798 с	30 d	$1.1 imes 10^{-3} d$			189
$[(H_2O)(bpy)_2Ru(4,4'-bpy)-Os^{III}(tpy)(bpy)]^{5+}$	$H_2O (pH = 1)$			795 с	34 d	$2.2\times10^{-3}d$			189
$[(HO)(bpy)_2Ru^{III}(4,4'-bpy)-Os(tpy)(bpy)]^{4+}$	$H_2O (pH = 10.9)$			795 с	24 d	$2.5 imes 10^{-3} d$			189
Pd ₂									
[(CNN)Pd(4,4'-bpy)Pd(CNN)] ²⁺	AN	446	7200	606	<1.0	$7 imes 10^{-4}~a^{s}$			190
	BuCN						\approx 545	< 0.001	190
W_2	CUC	400	0.400	000	1 000	0.05 10-4 1			101
$[(CO)_5 W(4, 4 - DPY) W(CO)_5]$		432	9400	678 c	220 d	$0.95 \times 10^{-4} d$			181
		431	10800	654 c	394 d	$1.59 \times 10^{-4} d$			181 183
	00110	100	10000	0010	004 u	1.00 × 10 u			184
	C7H14/C6H6	446	11100	649 c	429 d	$1.60 imes 10^{-4} ext{ d}$			181
	2Me-THF						488 596	1.8, 10.2 5.2	184

Table 9.6 (Continued)

compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)
Re ₂									
[(CO) ₃ (bpy)Re(4,4'-bpy)-	AN	350		578 c	365 d				185
$Re(bpy)(CO)_3]^{2+}$	AN	340	17600	585 c	365 d	0.0332 d			191,192
	Et/Met			570 0	321 d	0.170 u		4.65	191,192
	PC			590 с	325 d	0.0267 d		1.00	191,192
[(CO) ₃ (bpy)Re(Me₂-4,4'-bpy)-	AN	380	7300	620 c [§]	126, 300 d	l 0.0185 d			191
Re(4DCE-bpy)(CO) ₃] ²⁺	DCE			612 c [§]		0.16 d			191
$[(CO)_{c}(dmbny)Re(4.4'_{c}bny)_{c}$	PC AN	340	18800	630 C ⁸	432 d	0.0141 d 0.0094 d			191
$Re(dmbpy)(CO)_3]^{2+}$	DCE	540	10000	565 c	1980 d	0.090 d			191
1,577,761	Et/Met				595 d				191
	PC	0.45	17500	585 c	335 d	0.0068 d			191
$[(CO)_3(dabpy)Re(4,4'-bpy)-$ Bo(dabpy)(CO) ₂] ²⁺	AN DCF	345	17500	660 C	64 d 690 d	0.007 d 0.0015 d			191
ite(uabpy)(ee)3]	Et/Met			5100	89 d	0.0015 u			191
	PC			650 c	49 d	0.006 d			191
[(CO) ₃ (4DCE-bpy)Re(4,4'-bpy)-	AN	350	16500	650 c	118 d	0.0119 d			191
Re(4DCE-bpy)(CO) ₃] ²⁺	DCE Et/Mot			625 c	314 d	0.085 d			191
	PC			650 c	78 u 100 d	0 0102 d			191
[(CO) ₃ (bpy)Re(4,4'-bpy)-	AN	340	17900	585 c	388 d	0.0224 d			191
$Re(dmbpy)(CO)_3]^{2+}$	DCE			570 с	1060 d	0.145 d			191
	PC	0.40	10700	585 c	328 d	0.0199 d			191
$\frac{[(CO)_3(Dpy)Re(4,4 - Dpy)}{Re(dabny)(CO)_a]^{2+}}$	AN DCF	340	19700	605 C 590 c	42, 360 d	0.0042 d 0.020 d			191
Re(uabpy)(CO)3]	PC			598 c		0.0019 d			191
[(CO) ₃ (bpy)Re(4,4'-bpy)-	AN	380	9100	650 c	116 d	0.0119 d			191
$Re(4DCE-bpy)(CO)_3]^{2+}$	DCE			625 c	340 d	0.095 d			191
	Et/Met			650 a	74 d	0.0102 d			191
[(CO) ₂ (dabpy)Re(4.4'-bpy)-	AN	350	16400	650 c	99 d	0.0102 d			191
$Re(4DCE-bpy)(CO)_3]^{2+}$	DCE	000	10100	620 c	261 d	0.060 d			191
	Et/Met				60 d	_			191
$[(CO) (his) \mathbf{P}_{c}(\mathbf{A} \mathbf{A}' \mathbf{h}_{max})]$	PC	000		650 c	80 d	0.0050 d			191
$[(CO)_3(D1q)Re(4,4 - Dpy) - Re(big)(CO)_2]^{2+}$	AN	382		687 C	<20 d	4.0 × 10 ° d			185
$[(CO)_3(Me_4phen)Re(4,4'-bpy)-$	AN	340		630 c	595 d				185
$Re(Me_4phen)(CO)_3]^{2+}$									
Us_2 [(CO)(hpv) ₂ Os(4 4'-hpv)-	CH ₆ Cl ₆	510	9000						193
$Os(phen)(dppe)Cl]^{3+}$	Et/Met	010	0000				550	< 0.01	193
							625	3.93	
$[(CO)(bpy)_2Os(4,4'-bpy)-Os^{III}(abap)(dppa)CII4+$	AN	$\approx \! 1700$	<200	600 c	1970 d				193
os (pilei)(uppe)elj		В	. Electroch	emical D	ata				
compound		solvent	RE	E _{ox} , V	' [<i>n</i>] (site)	$E_{ m red}$, V	[<i>n</i>] (site)		ref(s)
CrMo								(51)	100
$[(CO)_5Cr(4,4'-bpy)Mo(CO)_5]$		CH_2CI_2	SCE	+1.06	51	-1.43 [1] (BL),	-1.78 [1]	(BL)	183
$[(CO)_{\sharp}Cr(4.4'-bnv)W(CO)_{\sharp}]$		CH ₂ Cl ₂	SCE	+1.06	i i	-1.37 [1] (BL).	-1.70 [1]	(BL)	183
Mo ₂							[-]	()	
[(CO) ₅ Mo(4,4'-bpy)Mo(CO) ₅]		CH_2Cl_2	SCE	+1.16	i	-1.38 [1] (BL),	-1.67 [1]	(BL)	183
мо w [(CO) ₅ Mo(4,4 ′- bpy)W(CO) ₅]		CH ₂ Cl ₂	SCE	+1.07	'i	-1.32 [1] (BL),	-1.68 [1]	(BL)	183
Ru ₂	ans+		0.015		1.4.00				100
$[Cl(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)_2l(dpte)_2Ru(4,4'-bpy)Ru(bpy)Ru(bpy)_2Ru(bpy)_2Ru(bpy)Ru(bpy)_2Ru(bpy)Ru(b$	CIJ^{2+}	AN	SCE	+0.81	, +1.20	0.09			188
W_{\circ})2CI]**	AIN	SCE	±1.20	,	⊤0.8 2			100
$[(CO)_5W(4,4'-bpy)W(CO)_5]$		CH_2Cl_2	SCE	+1.09) i (W)	-1.30 [1] (BL),	-1.80 [1]	(BL)	181,183
		CH_2Cl_2/DN	MF SCE	+1.12	2 i (W),	-1.20 [1] (BL),	-1.47 [1]	(BL),	181
		DMF	SCF	+1 07	.321(W)	-1.13 [1] (BL)	-1 42 [1]	(BI)	181
		Dim	DOL	1.07	1 (**)	-1.85 [1] (BI)	(DL),	101
Re ₂									
$[(CO)_3(bpy)Re(4,4'-bpy)-$		AN	SSCE	41.90) [2] ! : (D o)	-1.06 [1] (BL),	-1.20[2]	(bpy)	191
Re(upy)(CO)3]		DWISO	SCE	⊤1. <i>1</i> d) I (ICE)	-0.90 [1] (BL), -1.26 [2] (Re	-1.10 [2] e)	(upy),	105
[(CO) ₃ (bpy)Re(Me₂-4,4'-bpy)-		AN	SSCE	E +1.90)	-0.82 (4DCE-b	, −1.17	7 (bpy)	191
$Re(4DCE-bpy)(CO)_3]^{2+-1}$		AN	COOT	7 110	[0]	1.04.[1] (D1.)	10:/3	nhn)	101
$Re(dmbpy)(CO)_{3}^{(1)}$		AIN	22CE	- +1.85	[2]	-1.04 [1] (BL),	-1.31 (dr	пору)	191
[(CO) ₃ (dabpy)Re(4,4 '- bpy)-		AN	SSCE	E +1.62	2 [2]	-1.09 [1] (BL),	-1.65 i (d	labpy)	191
$\frac{\text{Re}(\text{dabpy})(\text{CO})_3]^{2+}}{(\text{CO})_3(\text{ADCE have)} = (4.4\%)^{2+}}$		AN	COOT	7	n		nr) 1 1 (101
Re(4DCE-bpy)Re(4,4 -bpy)- Re(4DCE-bpy)(CO) ₂ 1 ²⁺		AIN	SSCE	≥ ≈+2.0	U	-0.82 (4DCE-b (4DCF-hnv)	py), =1.18 =1.25 i (F	S SL)	191
[(CO) ₃ (bpy)Re(4,4'-bpy)-		AN	SSCE	E +1.92	2 [2]	-1.05 (BL), -1	.2 (bpy),	_,	191
Re(dmbpy)(CO) ₃] ²⁺						-1.34 i (dmb	py)		

Table 9.6 (Continued)

compound	solvent	RE	E_{ox} , V $[n]$ (site)	$E_{\rm red}$, V [n] (site)	ref(s)
Re ₂					
[(CO) ₃ (bpy)Re(4,4'-bpy)- Re(dabpy)(CO) ₃] ²⁺	AN	SSCE	+1.64, +1.9	-1.06 (BL), -1.21 (bpy), -1.62 i (dabpy)	191
[(CO) ₃ (bpy)Re(4,4'-bpy)- Re(4DCE-bpy)(CO) ₃] ²⁺	AN	SSCE	+1.90, ≈+2.0	-0.80 (4DCE-bpy), -1.20 [2] (BL and bpy)	191
[(CO) ₃ (dabpy)Re(4,4'-bpy)- Re(4DCE-bpy)(CO) ₃] ²⁺	AN	SSCE	+1.64 , ≈ +2.0	-0.82 (4DCE-bpy), -1.15 (BL), -1.63 i (dabpy)	191
$[(CO)_3(biq)Re(4,4'-bpy)Re(biq)(CO)_3]^{2+}$	DMSO	SCE	+1.84 i (Re)	-0.59 [2] (biq), -1.16 [2] (biq)	185
$[(CO)_3(Me_4phen)Re(4,4'-bpy)-Re(Me_4phen)(CO)_3]^{2+}$	DMSO	SCE	+1.68 i (Re)	-0.99 [1] (BL), -1.36 i (Re)	185
Os ₂					
[(CO)(bpy) ₂ Os(4,4'-bpy)- Os(phen)(dppe)Cl ³⁺	AN	SCE	+0.95 [1] (Os-phen), +1.67 [1] (Os-bpy)		194
	AN	SSCE	+1.03 [1] (Os-phen), +1.75 [1] (Os-bpy)		193
	DMF	SSCE	[-](F))	-1.02 [1] (bpy), -1.16 [1] (bpy), -1.29 [1] (phen), -1.45 i (BL)	193

 † Numerical values are reported in a supplementary table in the original paper. ‡ From transient excited state absorption, 280 K. $^\$$ Excitation wavelength dependent.

Table 9.7

ру-S4_n-ру N

	А	. Photo	physical Da	ata					
compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
$[(NH_3)_5Ru(py-S4_2-py)Ru(bpy)_2Cl]^{3+}$ $[(NH_3)_5Ru^{III}(py-S4_2-py)Ru(bpy)_2Cl]^{4+}$	AN/CH ₂ Cl ₂ AN/CH ₂ Cl ₂	† †	† †	711 713	74 d‡	${}^{<2}\times10^{-4}d\\{}^{<5}\times10^{-4}d$			188 188
$[Cl(dpte)_2Ru(\mathbf{py}-\mathbf{S4}_2-\mathbf{py})Ru(bpy)_2Cl]^{2+}$ $[Cl(dpte)_2Ru(\mathbf{py}-\mathbf{S4}_2-\mathbf{py})Ru[II(bpy)_2Cl]^{3+}$	AN/CH_2Cl_2	Ť +	Ť +	706	64 d∔	$<5 \times 10^{-4} d$			188
\mathbf{RuRe}	AIN/CI12C12	I	1	704		<5 × 10 u			100
[(NH ₃) ₅ Ru(py-S4₂-py)Re(bpy)(CO) ₃] ³⁺	AN	410	4830	564	0.23 d				195
[(NH ₃) ₅ Ru(py-S4₂-py)- Re(Me ₄ bpy)(CO) ₃] ³⁺	AN	410	5200	521	0.28 d				195
[(NH ₃) ₅ Ru(py - S4₂-py)- Re(DCO-bpy)(CO) ₃] ³⁺	AN	410	4500	629	0.15 d				195
[(NH ₃) ₅ Ru(py-S4₃-py)- Re(bpy)(CO) ₃] ³⁺	AN	410	4900	567	0.20 d				195
$[(NH_3)_5Ru(py-S4_3-py)-Re(Me_4bpy)(CO)_3]^{3+}$	AN	410	5200	523	0.25 d				195
$[(NH_3)_5Ru(\mathbf{py}-\mathbf{S4}_3-\mathbf{py})-Re(DCO-bpy)(CO)_3]^{3+}$	AN	410	4620	629	0.14 d				195
W_2		970	15000						101
$[(CO)_5 W(\mathbf{py} - \mathbf{S4}_2 - \mathbf{py})W(CO)_5]$	2Me-THF	379	15000				522 c	1.8	181
Re ₂							0220	110	101
[(CO) ₃ (bpy)Re(py-S4₂-py)- Re(bpy)(CO) ₃] ²⁺	AN AN DCE Et/Met	347 352	6700	580 590 с 575 с	210 200 d 510 d 180 d	0.13 0.0325 d 0.135 d		4 62	185 191,192 191,192 191,192
	PC			596 c	175 d	0.0264 d		1.02	191,192
$[(CO)_3(biq)Re(\mathbf{py}-\mathbf{S4_2}-\mathbf{py})-Re(biq)(CO)_3]^{2+}$	AN	380		687	<20	$2.8 imes 10^{-3}$			185
[(CO) ₃ (Me ₄ phen)Re(py-S4₂-py)- Re(Me ₄ phen)(CO) ₃] ²⁺	AN	340		529	10550	0.54			185
[(CO) ₃ (bpy)Re(py-S4₃-py)- Re(bpy)(CO) ₃] ²⁺	AN	349		580	170				185
[(CO) ₃ (biq)Re(py-S4₃-py)- Re(biq)(CO) ₃] ²⁺	AN	380		687	<20				185
$[(CO)_3(Me_4phen)Re(\mathbf{py}-\mathbf{S4_3}-\mathbf{py})-Re(Me_4phen)(CO)_3]^{2+}$	AN	340		528	10500				185
OS ₂ [(CO)(bpy) ₂ Os(py-S4₂-py)-	CH ₂ Cl ₂	520	1500	688 c					193
Os(phen)(dppe)Cl] ³⁺	Et/Met	515			<10 160		550 640	0.045 3.74	193,194
[(CO)(bpy) ₂ Os(py-S4₂-py)- Os ^{III} (phen)(dppe)Cl] ⁴⁺	AN CH2Cl2 Et/Met	≈1700	<200	607 c	1620				193 193 193

Table 9.7 (Continued)

B. Electrochemical Data										
compound	solvent	RE	E_{ox} , V [n] (site)	$E_{\rm red}$, V [n] (site)	ref(s)					
\mathbf{Ru}_{2} [(NH ₃) ₅ Ru(py-S4₂-py)Ru(bpy) ₂ Cl] ³⁺	AN	SCE	+0.38, +0.79		188					
$[(NH_3)_5 Kl^{14}(\mathbf{py}\cdot\mathbf{S4}_2\cdot\mathbf{py})Ku(bpy)_2 Cl]^{2+}$ $[Cl(dpte)_2 Ru(\mathbf{py}\cdot\mathbf{S4}_2\cdot\mathbf{py})Ru(bpy)_2 Cl]^{2+}$ $[Cl(dpte)_2 Ru(\mathbf{py}\cdot\mathbf{S4}_2\cdot\mathbf{py})Ru^{11}(bpu)_2 Cl]^{3+}$	AN AN AN	SCE SCE SCE	+0.79 +0.78, +1.18 +1.18	+0.38	188 188 188					
		JCL	1.10	10.70	100					
$[(NH_3)_5Ru(\textbf{py-S4}_2\textbf{-py})Re(bpy)(CO)_3]^{3+}$	AN	SSCE	+0.30 [1] (Ru), +1.76 i [1] (Re)	-1.09 [1] (bpy), -1.30 [1] (Re)	195					
$[(NH_3)_5Ru(py-S4_2-py)Re(Me_4bpy)(CO)_3]^{3+}$	AN	SSCE	+0.30 [1] (Ru), +1.66 i [1] (Re)	-1.40 [1] (Re)	195					
[(NH ₃) ₅ Ru(py-S4₂-py)Re(DCO-bpy)(CO) ₃] ³⁺	AN	SSCE	+0.30 [1] (Ru), +1.88 i [1] (Re)	-0.83 [1] (bpy), -1.24 [1] (Re)	195					
[(NH ₃) ₅ Ru(py-S4₃-py)Re(bpy)(CO) ₃] ³⁺	AN	SSCE	+0.30 [1] (Ru), +1.75 i [1] (Re)	-1.09 [1] (bpy), -1.30 [1] (Re)	195					
$[(NH_3)_5Ru(\mathbf{py}-\mathbf{S4}_3-\mathbf{py})Re(Me_4bpy)(CO)_3]^{3+}$	AN	SSCE	+0.30 [1] (Ru), +1.67 i [1] (Re)	-1.40 [1] (Re)	195					
[(NH ₃) ₅ Ru(py-S4₃-py)Re(DCO-bpy)(CO) ₃] ³⁺	AN	SSCE	+0.30 [1] (Ru), +1.88 i [1] (Re)	-0.83 [1] (bpy), -1.24 [1] (Re)	195					
W_2		SCE	1 16 ; (W)	< 9.20	101 109					
[(CO) ₅ w(py-S4₂-py)w(CO) ₅]	CH ₂ Cl ₂ CH ₂ Cl ₂ /DMF	SCE	+1.161 (W) +1.11 i (W), +1.34 i (W)	<-2.30	181,185					
	DMF	SCE	+1.10 i (W)	-1.84 [1] (BL), -2.17 i (BL)	181					
Re ₂										
$[(CO)_3(bpy)Re(\mathbf{py}-\mathbf{S4}_2-\mathbf{py})Re(bpy)(CO)_3]^{2+}$	AN DMSO	SSCE SCE	+1.85 [2] +1.73 i (Re)	-1.17 [2] (bpy) -1.08 [2] (bpy), -1.20 [2] (Pa)	191 185					
$[(\mathrm{CO})_3(\mathrm{biq})\mathrm{Re}(\mathbf{py}\textbf{-}\mathbf{S4_2}\textbf{-}\mathbf{py})\mathrm{Re}(\mathrm{biq})(\mathrm{CO})_3]^{2+}$	DMSO	SCE	+1.82 i (Re)	-1.30 [2] (ke) -0.59 [2] (biq), -1.16 [2] (big)	185					
$[(CO)_3(Me_4phen)Re(\mathbf{py}-\mathbf{S4_2}-\mathbf{py})Re(Me_4phen)(CO)_3]^{2+}$	DMSO	SCE	+1.66 i (Re)	-1.36 i (Re)	185					
$[(CO)_3(bpy)Re(\mathbf{py}-\mathbf{S4}_3-\mathbf{py})Re(bpy)(CO)_3]^{2+}$	DMSO	SCE	+1.73 i (Re)	-1.08 [2] (bpy), -1.30 [2] (Re)	185					
$[(CO)_3(biq)Re(\mathbf{py}-\mathbf{S4_3}-\mathbf{py})Re(biq)(CO)_3]^{2+}$	DMSO	SCE	+1.83 i (Re)	-0.59 [2] (biq), -1.16 [2] (biq)	185					
$[(CO)_3(Me_4phen)Re(py-S4_3-py)Re(Me_4phen)(CO)_3]^{2+}$ Os ₂	DMSO	SCE	+1.66 i (Re)	-1.36 i (Re)	185					
$[(CO)(bpy)_2Os(\mathbf{py}-\mathbf{S4_2-py})Os(phen)(dppe)Cl]^{3+}$	AN	SCE	+0.95 [1] (Os-phen), +1.67 [1] (Os-bpy)		194					
	AN DMF	SSCE SSCE	+0.93, +1.64	-1.02 [1] (bpy), -1.19 [1] (bpy), -1.37 i (phen)	193 193					

 † Numerical values are reported in a supplementary table in the original paper. ‡ From transient excited state absorption, 280 K. $^{\$}$ Data in other solvents are given in the original papers.

Table 9.8

|--|

A. Photophysical Data

		-	0						
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\label{eq:response} \begin{array}{c} \mathbf{Re_2} \\ [(\mathrm{CO})_3(\mathrm{bpy})\mathrm{Re}(\mathbf{py}\text{-}\mathbf{NN}\text{-}\mathbf{py})\mathrm{Re}(\mathrm{bpy})(\mathrm{CO})_3]^{2+} \end{array}$	CH ₂ Cl ₂	366	4085	535	1040				196

Table 9.9

ру-Е4 _А -ру	

			1 5						
compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{\rm RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
$[Cl(dpte)_2Ru(\mathbf{py}-\mathbf{E4}_{\mathbf{A}}-\mathbf{py})Ru(bpy)_2Cl]^{2+}$	AN/CH ₂ Cl ₂	†	†	700	60 d‡	$^{<1} imes 10^{-4} \mathrm{d}$			188
$[Cl(dpte)_2Ru(\mathbf{py}-\mathbf{E4}_{\mathbf{A}}-\mathbf{py})Ru^{III}(bpy)_2Cl]^{3+}$	AN/CH ₂ Cl ₂	†	†	704	50 d‡	$^{<1} imes 10^{-4} \mathrm{d}$			188
W ₂									
[(CO) ₅ W(py-E4_A-py)W(CO) ₅]	C_6H_6	450	15500	560 c	123 d	$1.3 imes10^{-5}~{ m d}$			183,184
	2Me-THF						464	1.6, 9.3	184
							521	8.9	

Table 9.9 (Continued)

B. Electrochemical Data										
compound	solvent	RE	E_{ox} , V [n] (site)	$E_{\rm red}$, V [<i>n</i>] (site)	ref(s)					
$ \begin{array}{c} \textbf{Ru}_{2} \\ [Cl(dpte)_{2}Ru(\textbf{py-E4}_{A}\textbf{-py})Ru(bpy)_{2}Cl]^{2+} \\ [Cl(dpte)_{2}Ru(\textbf{py-E4}_{A}\textbf{-py})Ru^{III}(bpy)_{2}Cl]^{3+} \\ \textbf{W}_{2} \end{array} $	AN AN	SCE SCE	+0.79, +1.21 +1.21	+0.79	188 188					
$[(CO)_5W(\mathbf{py}-\mathbf{E4}_{\mathbf{A}}-\mathbf{py})W(CO)_5]$	CH_2Cl_2	SCE	+1.09 i	-1.20 [1] (BL), -1.46 [1] (BL), -1.80 [1] (BL)	183					

 † Numerical values are reported in a supplementary table in the original paper. ‡ From transient excited state absorption, 280 K.

Table 9.10

ру	-E4 _B -py								
	A. Pł	notophysi	cal Data						
compound	solvent	Abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\begin{array}{l} \textbf{Re_{z}} \\ [(CO)_{3}(bpy)Re(\textbf{py-E4_{B}-py})Re(bpy)(CO)_{3}]^{2+} \\ [(CO)_{3}(phen)Re(\textbf{py-E4_{B}-py})Re(phen)(CO)_{3}]^{2+} \end{array}$	AN AN CH2Cl2	347 383 sh	6710 5825	586 570 550	200 1500 2500		$\begin{array}{c} 508^\dagger \\ 540^\dagger \end{array}$		196 196 196
		303 811	3623	550	2300				190

[†] Solid sample.

Table 9.11

A. Photophysical Data

compound	solvent	Abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Re₂ [(CO) ₃ (bpy)Re(py-crown-py)Re(bpy)(CO) ₃] ²⁺	nitromethane			556 c	520 d				197

Table 9.12

			1 5										
compound	solvent	Abs (nm)	ϵ (M ⁻¹ cm ⁻¹)	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)				
Ru ₄ [{Cl(bpy) ₂ Ru} ₄ ZnTpyP] ⁴⁺	DMF EtOH	606	≈32000 f	606 d 655 d	900 d		597 652 770		198 198				
	B. Electrochemical Data												
compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site	e)		<i>E</i> _{red} , V [<i>1</i>	ı] (site)		ref(s)				
$\begin{array}{l} \textbf{Ru}_{4} \\ [\{Cl(bpy)_{2}Ru\}_{4}\textbf{ZnTPyP}]^{4+} \end{array}$	DMF	NHE	+0.92 [4] (Ru), +1.50 i (porph	yrin)	-0.93 (Zn), -1.35 (bj	—1.14 (po oy + porph	rphyrin), ıyrin), —1.67 i ((bpy)	198				

Table 9.13

DPT ⁻	

	A. Photophysical Data										
compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{\rm RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
Cu ₂			7700				570.6	0.00 10-2	100		
[Cu ₂ (DPT) ₂] Ag ₂	2Me-THF	392	7720				≈570 f	2.23×10^{-3}	199		
$\tilde{[Ag_2(\mathbf{DPT})_2]}$	2Me-THF	374	12600				610	2.73×10^{-3}	199		

Table 9.14

bpym													
A. Photophysical Data													
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)				
$\begin{array}{l} \mathbf{Ru_2} \\ [(bpy)_2 \mathrm{Ru}(\mathbf{bpym}) \mathrm{Ru}(bpy)_2]^{4+} \end{array}$	AN AN CH2Cl2 H2O	594 594 588 608	6900 8130 7200 6900	790 u 770 u 824 c	<20 d <20 d <15 d	$\leq 10^{-4}$ $\leq 10^{-4}$ $< 10^{-4}$	702 c	0.36	200 201 200 200				
RuRh $[(bpy)_2Ru(bpym)RhH_2(PPh_3)_2]^{3+}$	H ₂ O H ₂ O acetone	606 551	7600 4900	767	41	$1.9 imes 10^{-3}$	769 [§]		200 202 203				
RuRe [(bpy) ₂ Ru(bpym)Re(CO) ₃ Cl] ²⁺	AN DMSO Et/Met	558 556	4500 2167				774 630		204 205 204				
RuRe ₂ [(bpy)Ru{(bpym)Re(CO) ₃ Cl} ₂] ²⁺ PuRe	AN Et/Met	531	6800	630	942	$2.7 imes 10^{-5}$	616		204 204				
[Ru{(bpym)Re(CO) ₃ Cl} ₃] ²⁺	AN Et/Met	501	11000	640	847	$\textbf{2.6}\times\textbf{10}^{-5}$	586		204 204				
		В.	Electrochemic	al Data									
compound	solvent	RE	<i>E</i> _{ox} , V [<i>1</i>	7] (site)		$E_{ m red},{ m V}$	[<i>n</i>] (site)		ref(s)				
$\label{eq:rescaled} \begin{array}{l} Ru_2 \\ [(bpy)_2 Ru(bpym) Ru(bpy)_2]^{4+} \end{array}$	AN AN	SCE SSCE	+1.44 [1] (Ru), +1.53 [1] (Ru),	+1.62 [1] (+1.69 [1] ((Ru) (Ru) -	-0.41 [1] (BL), -	1.08 [1] (B	L)	206 115				
RuRh $[(bpy)_2Ru(bpym)RhH_2(PPh_3)_2]^{3+}$ RuRe	AN	SCE	+1.65 i (overlap	ping Ru +	- Rh) -	–0.47 [1] (BL), –	1.26, -1.5	2, -1.77	203				
[(bpy) ₂ Ru(bpym)Re(CO) ₃ Cl] ²⁺	AN	SSCE	+1.58 [1] (Ru),	+1.76 i (R	e) -	-0.41 [1] (BL), - -1.56 (bpy), -	1.10 [1] (B 1.75 (Re)	L),	204				
\mathbf{KuKe}_{2} $[(bpy)Ru\{(bpym)Re(CO)_{3}Cl\}_{2}]^{2+}$	AN	SSCE	+1.61 (Ru + Re)		-0.33 [1] (BL), - -1.09 [1] (BL) -1.80 i (Re)	0.48 [1] (B , -1.23 [1]	L), (BL),	204				
$[Ru{(bpym)Re(CO)_3Cl}_3]^{2+}$	AN	SSCE	+1.59 (Ru + Re)		-0.21 [1] (BL), - -0.53 [1] (BL), -1.29 (BL), -1	0.35 [1] (B , –1.24 (Bl 1.35 (BL)	L), L),	204				

§ Solid, 15 K.

Table 9.15

	/ 1. I	notobu	ysical Data						
compound	solvent	Abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm}^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)
RuPt $[(bpy)_2Ru(bpy-E4_C)Pt(E4_C-bpy)(PBu^n_3)_2]^{2+}$	AN	458	15200	620					207
$[Cl(CO)_{3}Re(\mathbf{bpy}-\mathbf{E4}_{C})Pt(E4_{C}-bpy)(PBu^{n}_{3})_{2}]$	AN	364	19700	620					207

Table 9.15 (Continued)

compound	solvent	Abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ($\mu\mathbf{s}$)	ref(s)
OsPt									
[(bpy) ₂ Os(bpy-E4 _C)Pt(E4 _C -bpy)(PBu ⁿ ₃) ₂] ²⁺	AN	627	1800	733					207
Ru ₂ Pt									
[{(bpy) ₂ Ru(bpy-E4 _C)} ₂ Pt(PBu ⁿ ₃) ₂] ^{4+§}	AN	456	31200	618					208
Re ₂ Pt									
$[{Cl(CO)_{3}Re(\mathbf{bpy}-\mathbf{E4_{C}})}_{2}Pt(PBu^{n_{3}})_{2}]$	AN	393	36200	603					208
Os ₂ Pt									
$[{(bpy)_2Os(bpy-E4_C)}_2Pt(PBu^n_3)_2]^{2+}$	AN	481	15600	733					208
FeRu ₃ Pt ₃									
$[Fe{(bpy-E4C)Pt(PBun3)2(E4C-bpy)Ru(bpy)2}3]8+$	acetone	530	15200	620					207
			1		1				

[§] The *cis*- and *trans*-Pt(II) isomers have been prepared and show identical absorption and emission properties.

Table 9.16

4Mebpy-S4 ₂ -Cp	

A. Photophysical Data

compound	solvent	Abs (nm)	$(\mathrm{M}^{-1}\overset{\epsilon}{\mathrm{cm}^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\label{eq:constraint} \begin{array}{c} \textbf{FeRu} \\ [CpFe(\textbf{Cp-S4}_2\textbf{-4Mebpy})Ru(bpy)_2]^{2+} \end{array}$	AN	\approx 452 f	≈13500 f		0.110	<10 ⁻⁴			209

Table 9.17

	4Mel	bpy-S4 _n -bp	y4Me										
$\underline{\frown}_{N} \qquad \underline{\frown}_{N} $													
compound	solvent	Abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)				
FeRu													
[Fe(4Mebpy-S4₂- bpy4Me) ₃ Ru] ⁴⁺	DCE			\approx 630	0.41 d				210				
[Fe(4Mebpy-S4₃- bpv4Me) ₃ Ru] ⁴⁺	DCE			\approx 630	0.35 d				210				
[Fe(4Mebpy-S4 ₄ - bpy4Me)₃Ru] ⁴⁺	DCE			\approx 630	2.7 d				210				
[Fe(4Mebpy-S4 ₅ - bpy4Me) ₂ Ru] ⁴⁺	DCE			pprox630	13.3 d				210				
CoRu													
[(bpy) ₂ Co- (4Mebpy-S4₂-bpy4Me)- Ru(bpy) ₂] ⁵⁺	AN DMSO/H ₂ O	453	11700	623 c	0.3 a		590 с	0.45	211 211				
Ru ₂													
[(bpy)2Ru-	AN	454	19400						211				
(4Mebpy-S42-bpy4Me)-	H_2O	455	27100	614 u	630 d				212,213				
Ru(bpy) ₂] ⁴⁺	PC	457		620 u	1037 d	0.06			214				
[(bpy) ₂ Ru- (4Mebpy-S4₃-bpy4Me)- Ru(bpy) ₂] ⁴⁺	H ₂ O	455	27800	616 u	520 d				212,213				
[(bpy) ₂ Ru- (4Mebpy-S4₁₀-bpy4Me)- Ru(bpy) ₂] ⁴⁺	AN	454		617 u	1140 d				215				
RuRh													
[(dmphen) ₂ Ru- (4Mebpy-S4₂-bpy4Me)-	AN	$\approx \!\! 450$	≈20000	610 c	6 (85%), >30 (15%)	≈0.001			216				
$Rh(dmbpy)_2]^{5+\ddagger}$	Et/Met						575 с	6.8	216				
RuRe													
[(bpy)2Ru-	AN	454			942 d [§]	0.072 d§			217				
(4Mebpy-S4₂-bpy4Me)- Re(CO) ₃ py] ³⁺	CH_2Cl_2	\approx 455 f	≈13000 f	540 610		0.011 d 0.149 d			218				
	CH_2Cl_2	456	14000	610 c	1001 d§	0.164 d§			219				
	CH_2Cl_2	456			1148 d [§]	0.105 d§			217				
	DCE	456			989 d [§]	0.102 d [§]			217				
	EtOH	453			617 d [§]	0.035 d [§]			217				
	THF	455			803 d [§]	0.060 d§			217				

794 Chemical Reviews, 1996, Vol. 96, No. 2

Table 9.17 (Continued)

compound	solvent	Abs (nm)	(M	ϵ^{-1} cm ⁻¹)	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\mathtt{RT}}$	Em _{77K} (nm)	τ_{77K} (µs)	ref(s)
RuOs		,		,	0.17	,		. 7	v	
[(bpy) ₂ Ru- (4Mebpy-S4₂-bpy4Me)- Os(bpy) ₂] ⁴⁺	AN EtOH				≈615 u,f ≈730 u,f	1.2 c 55 d 1.9 c	1			220 220
	H_2O					52 d 0.86	d			220
	MeOH	pprox660 sh	f ≈	4500 f		23 d				220
[(bpy)2Ru- (4Mebny-S42-bny4Me)-	AN				≈615 u,f ≈730 u f	2.5 c	1			220
$(1000 \text{ py})^{-3} \text{ supplies}^{-3}$ $(1000 \text{ py})^{-3}$ $(1000 p$	EtOH				10700 u,i	3.0 c	1			220
	H_2O					2.2 (1			220
	MeOH	pprox660 sh	\mathbf{f} \approx	4500 f	615 u	18 0				220
[(bpy)2Ru-	AN				730 u ≈615 u,f	7.9 c	1			220
(4Mebpy-S4₅-bpy4Me)- Os(bpy) ₂] ⁴⁺	EtOH				≈730 u,f	48 d 8.0 c	1			220
	H_2O					42 d 5.8 c	1			220
[(bpy) ₂ Ru- (4Mebpy-S47-bpy4Me)- Os(bpy) ₂] ⁴⁺	MeOH	≈660 sh	f ≈	4500 f		19 d				220
	AN				≈615 u,f ≈730 u f	12.1 c 56 d	1			220
$(11102 p_{j}) = 1/2 p_{j} = 1/2 (0)$ Os(bpy) ₂] ⁴⁺	EtOH				, oo uji	9.6 c	1			220
	H ₂ O					8.1 c	1			220
DD4	MeOH	pprox660 sh	\mathbf{f} \approx	4500 f		20 U				220
(bpy) ₂ Ru- (4Mebpy-S4₂-bpy4Me)- PtCle ¹²⁺	PC	457	1	3000	620 u	1034 d	0.06			214
Re_{2} [Cl(CO) ₃ Re- (4Mebpy-S4₂-bpy4Me)- Re(CO) ₃ Cl]	AN Et/Met	368		7900	603	30 d	$1.56 imes 10^{-3}$	450 540		221 221
FeRu ₃ [Fe{(4Mebpy-S4₂-bpy4Me)-	MeOH/H ₂ O				610 u	6 a	0.0052 a		0.045	222
Ru(bpy) ₂ } ₃] ^{8+ †} [Fe{(4Mebpy-S4 ₅ - bpy4Me)-	MeOH/H ₂ O				610 u	52 a	0.016 a		0.110	222
Ru(bpy) ₂ } ₃] ^{8+ †} [Fe{(4Mebpy-S4 ₁₂ -bpy4Me)-	MeOH/H ₂ O				610 u	92 a	0.015 a		0.085	222
$Ru(bpy)_{2}_{3}]^{8+\dagger}$		рт	Flaatua	ahamia	al Data					
compound		D. 1	solvent	RE	$\frac{1}{E_{\text{ox}}} V [n]$	ı] (site)	$E_{\rm red}, V[n]$	(site)		ref(s)
CoRu								<u> </u>		
[(bpy) ₂ Co(4Mebpy-S4₁-bpy4M	[e)Ru(bpy) ₂] ⁵⁺		AN	SSCE	+1.183 [1	l] (Ru)	$\begin{array}{r} -0.227 \ [1] \ (\text{Co}^{3+/2} \\ -0.99 \ [1] \ (\text{Co}^{2+} \\ -1.35, \ -1.55, \ -\end{array}$	²⁺), ^{-/+}), –1.81		211
[(bpy) ₂ Ru(4Mebpy-S4₂-bpy4 M	e)Ru(bpy) ₂] ⁴⁺		AN	SCE	+1.21)] (D)	-1.38, -1.57, -1	.81		212,213
			AN PC	SSCE	+1.184 [2 +1.19 (R)	u)	-1.38 [1] (bpy)			211
[(bpy) ₂ Ru(4Mebpy-S4₃-bpy4M RuRh	\mathbf{e})Ru(bpy) ₂] ⁴⁺		AN	SCE	+1.21		-1.38, -1.56, -1	.82		212,213
[(dmphen) ₂ Ru(4Mebpy-S4₂-bp RuRe	y4Me)Ru(dmb	py) ₂] ⁵⁺	AN	SCE	+1.13 (R	u)	-0.92 (Rh), -1.45	5, -1.66		216
[(bpy)2Ru(4Mebpy-S42-bpy4 M	le)Re(CO) ₃ py] ³	+	AN AN	SSCE SSCE	+1.25, +1.25, +1.25, +1.25, +1.78	1.78 i (Ru), i (Re)	-1.36, -1.60, -1 -1.36 [2] (BL + b -1.60 [2] (Re + -1.81 [1] (BL)	.81 py), - bpy),		218 219
RuOs [(bpy) ₂ Ru(4Mebpv-S4 ₂ -bpv4M	[e)Os(bpy) ₂] ⁴⁺		AN	SCE	+0.78 [1]	(Os).				220
[(bpy)Ru(4Mebpy-S4₃-bpy4M	e)Os(bpv)2l ⁴⁺		AN	SCE	+1.22 +0.78 [1]	[1] (Ŕu) (Os),				220
[(bpy) ₂ Ru(4Mebpv-S4 5- bpv4M	[e)Os(bpy) ₂] ⁴⁺		AN	SCE	+1.22 +0.78 [1]	[1] (Ru) (Os),				220
[(bpy) ₂ Ru(4Mebpv-S4 ₇ - bpv4 M	[e)Os(bpy) ₂] ⁴⁺		AN	SCE	+1.22 +0.78 [1]	[1] (Ŕu) (Os),				220
RuPt					+1.22	[1] (Ru)				
[(bpy) ₂ Ru(4Mebpy-S4₂-bpy4M Re ₂	[e)PtCl ₂] ²⁺		PC	SSCE	+1.19 (R	u)	-1.27 [1] (BL), -	1.38 [1] ((bpy)	214
[Cl(CO) ₃ Re(4Mebpy-S4₂-bpy4	Me)Re(CO) ₃ Cl	۱	DMF	SSCE	e 		-1.29 [1] (BL)		-	221
[‡] The Ru-based emission is st	rongly quencl	ned at roo	om tem	perature	e. [§] Excitat	ion wave	length dependen	t. † Prep	ared i	n situ.
224

226 225

Table 9.18

4Mebpy-S4_A-bpy4

4Mebpy-S 4_{C} -bpy4Me, X = S

4Mebpy-S4_B-bpy4

A. Photophysical Data Em_{RT} Em_{77K} Abs $\tau_{\rm RT}$ (ns) τ_{77K} $(M^{-1} cm^{-1})$ solvent Φ_{RT} ref(s) compound (nm) (nm) (nm) (µs) FeRu $[Fe(4Mebpy-S4_B-bpy4Me)_3Ru]^{4+}$ DCE \approx 630 0.34 d 210 [Fe(4Mebpy-S4c-bpy4Me)₃Ru]⁴⁺ DCE \approx 630 0.37 d 210 Ru₂ $[(bpy)_2Ru(4Mebpy-S4_A-bpy4Me)Ru(bpy)_2]^{4+}$ H_2O 455 615 u 481 d 213 RuRh $[(bpy)_2Ru(4Mebpy-S4_A-bpy4Me)Rh(bpy)_2]^{5+}$ AN 456 223 H_2O 59.9 d 223 527 d [(bpy)₂Ru(4Mebpy-S4_A-bpy4Me)Rh(phen)₂]⁵⁺ AN \approx 455 f $\approx \! 13000 \; f$ 223 H_2O 71.3 d 223 543 d RuRe $[(bpy)_2Ru(\textbf{4Mebpy-S4}_A\textbf{-bpy4Me})Re(CO)_3Cl]^{2+}$ AN \approx 450 f ≈13000 f 6.0 d 224 [(bpy)₂Ru(4Mebpy-S4_A-bpy4Me)Re(CO)₃(AN)]³⁺ AN 0.80 d 224 [(bpy)₂Ru(4Mebpy-S4_A-bpy4Me)Re(CO)₃(4-Mepy)]³⁺ AN 550 u 1.4 d 224 613 u $[(bpy)_2Ru(4Mebpy-S4_A-bpy4Me)Re(CO)_3(1-MeIm)]^{3+}$ 4.0 d 224 AN RuOs [(bpy)₂Ru(4Mebpy-S4_A-bpy4Me)Os(bpy)₂]⁴⁺ AN 2.5 d 220 41 d BuOH 630 u 225 750 u EtOH 3.0 d 220 41 d H_2O 2.2 d 220 19 d MeOH \approx 650 sh f $\approx \! 4600 \ f$ 615 u 2.1 d 226 720 u 18.5 d [(dmbpy)₂Ru(4Mebpy-S4_A-bpy4Me)Os(bpy)₂]⁴⁺ AN 1.4 d 220 63 d EtOH 220 1.9 d 53 d H_2O 1.1 d 220 22 d [(BTMFbpy)₂Ru(4Mebpy-S4_A-bpy4Me)Os(bpy)₂]⁴⁺ **BuOH** 630 u 225 750 u MeOH $\approx 640 \text{ sh f}$ ${\approx}4100~f$ $2.3 d^{\dagger}$ 225 40.5 d[†] **B. Electrochemical Data** E_{red} , V [n] (site) compound solvent RE E_{ox} , V [n] (site) ref(s) Ru₂ $[(bpy)_2Ru(\textbf{4Mebpy-S4}_{A}\textbf{-bpy4Me})Ru(bpy)_2]^{4+}$ -1.38213 AN SCE +1.21 RuRh $[(bpy)_2Ru(4Mebpy-S4_A-bpy4Me)Rh(bpy)_2]^{5+}$ +1.27 [1] (Ru) \approx -0.7 i (Rh) 223 AN SCE [(bpy)2Ru(4Mebpy-S4A-bpy4Me)Rh(phen)2]5+ AN SCE +1.27 [1] (Ru) \approx -0.7 i (Rh) 223 RuRe $[(bpy)_2Ru(\textbf{4Mebpy-S4}_{A}\textbf{-bpy4Me})Re(CO)_3Cl]^{2+}$ AN SCE +1.23 [1] (Ru), ≈-1.3 [1] (BL), 224 +1.36 [1] (Re) ≈ -1.5 [1] (bpy) I 224 224

[(bpy) ₂ Ru(4Mebpy-S4_A-bpy4Me)Re(CO) ₃ (AN)] ³⁺	AN	SCE	+1.24 [1] (Ru),	≈−1.3 [1] (BL),
			+1.59 [1] (Re)	≈−1.5 [1] (bpy)
[(bpy) ₂ Ru(4Mebpy-S4 _A -bpy4Me)Re(CO) ₃ (4-Mepy)]	³⁺ AN	SCE	+1.24 [1] (Ru),	≈ -1.3 [1] (BL),
			+1.72 [1] (Re)	≈−1.5 [1] (bpy)
[(bpy) ₂ Ru(4Mebpy-S4_A-bpy4Me)Re(CO) ₃ (1-MeIm)	³⁺ AN	SCE	+1.24 [1] (Ru),	≈ -1.3 [1] (BL),
			+1.60 [1] (Re)	≈−1.5 [1] (bpy)
RuOs				
[(bpy) ₂ Ru(4Mebpy-S4_A-bpy4Me)Os(bpy) ₂] ⁴⁺	AN	SCE	+0.77 [1] (Os),	
			+1.21 [1] (Ru)	
[(BTMFbpy) ₂ Ru(4Mebpy-S4 _A - bpy4Me)Os(bpy) ₂] ⁴⁺	AN	SCE	+0.76 [1] (Os),	-0.94 [1] (BTFMbpy),
			+1.48 [1] (Ru)	-1.14 [1] (BTFMbpy),
				-1.33 [1] (bpy), -1.51 [1] (bpy)

[†] At 273 K.

4Mebpy-S4_D-bpy4Me, $X = (CH_2)_8$ 4Mebpy-S4_E-bpy4Me, $X = (CH_2)_3$ -N-(CH₂)₃ \downarrow CH₃

A. Photophysical Data									
compound	solvent	Abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[(bpy) ₂ Ru(4Mebpy-S4_D-bpy4Me)Ru(bpy) ₂] ⁴⁺	AN	455		619 u	1150 d				215
$[(bpy)_2Ru(4Mebpy-S4_E-bpy4Me)Ru(bpy)_2]^{4+}$	AN	455		618 u	960 d				215

Table 9.20

	A. Photo	physio	cal Data						
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂ [(dmbpy) ₂ Ru(4Mebpy-E4_A-bpyMe)Ru(dmbpy) ₂] ⁴⁺ Re ₂	AN Et/Met	500	25810	750 с 730 с	1310 d 1500 d	0.005 d 0.008 d			227 227
$[(CO)_{3}(PTZ-py)Re(4Mebpy-E4_{A}-bpy4Me)-Re(PTZ-py)(CO)_{3}]^{2+}$	AN Et/Met	384	14000				600	5.29 20.1	114 114
$\label{eq:constraint} \begin{array}{l} \textbf{Os_2} \\ [(bpy)_2 Os(\textbf{4Mebpy-E4_A-bpy4Me})Os(bpy)_2]^{4+} \end{array}$	AN Et/Met	682	8520	>850 >850	37 d		>850		227 227
	B. Electro	ochem	ical Data						
compound	solven	t R	E E _{ox} , V	[<i>n</i>] (site)		Ered, V [A	n] (site)		ref(s)
$\begin{array}{l} Ru_2 \\ [(dmbpy)_2Ru(4Mebpy-E4_A-bpy4Me)Ru(dmbpy)_2]^{4+} \end{array}$	AN	SS	CE +1.16	[2] (Ru)	$-1.07 \\ -1.07$	[1] (BL), - 65 [2] (dm	-1.33 [1] bpy)	(BL),	227
$\begin{array}{l} Re_2 \\ [(CO)_3(PTZ\text{-}py)Re(\textbf{4Mebpy-E4}_A\text{-}bpy\textbf{4Me})\text{-} \\ Re(PTZ\text{-}py)(CO)_3]^{2+} \end{array}$	AN	SS	CE +0.76	(PTZ)	-1.05	(BL)	1.5.		114
$0s_2 \\ [(bpy)_2Os(4Mebpy-E4_A-bpy4Me)Os(bpy)_2]^{4+}$	AN	SS	CE +0.80	[2] (Os)	-1.07 -1.	[1] (BL), - 60 [2] (bpy	-1.22 [1] ⁄)	(BL),	227

A. Photophysical Data											
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
Ru ₂ [(dmbpy) ₂ Ru(4Mebpy-bd4-bpy4Me)Ru(dmbpy) ₂] ⁴⁺	AN	496	18200	780 c		<0.001 d			228		
В	. Electroo	hemic	al Data								
compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>]] (site)		<i>E</i> _{red} , V [<i>n</i>]	(site)		ref(s)		
$\label{eq:response} \begin{array}{c} \mathbf{Ru_2} \\ [(dmbpy)_2 \mathrm{Ru}(\mathbf{4Mebpy}\text{-}\mathbf{bd4}\text{-}\mathbf{bpy4Me}) \mathrm{Ru}(dmbpy)_2]^{4+} \end{array}$	AN	SSC	E +1.14 [2]	(Ru)	-1.05	6 (BL), -1.1	6 (BL), –	1.57	228		

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ($\mu\mathbf{s}$)	ref(s)
FeRu									
[Fe(4Mebpy-P4₁-bpy4Me) ₃ Ru] ⁴⁺	DCE			pprox630	34.5 d				210
Ru ₂									
[(dmbpy) ₂ Ru(4Mebpy-P4₀-bpy4Me)-	AN	468	31600	641 c	1570 d	0.125 d			228
Ru(dmbpy) ₂] ⁴⁺	Et/Met						613 c	5.09	228
$[(bpy)_2Ru(4Mebpy-P4_2-bpy4Me)Ru(biq)_2]^{4+}$	AN	550	9400	620 c		0.008			229
				748 c					
	Et/Met						586 c	298	229
							739 с	2300	
[(dmbpy)2Ru(4Mebpy-P42-bpy4Me)-	AN	462		687 c	894 d				230
Ru(dmbpy)(CN) ₂] ²⁺	DMA	464		697 c	800 d				230
	DMF	464		690 c	808 d				230
	DMSO	466		685 c	804 d				230
	EtOH	460		649 c	805 d				230
	HMPA	466		700 c	800 d				230
	NMF	462		649 c	800 d				230
	ру	466		695 c	924 d				230
[(dmbpy)2Ru(4Mebpy-P42-bpy4Me)-	AN	471	27540	617 c	820 d	0.066 d			231
Ru(dmbpy) ₂] ⁴⁺	Et/Met						602 c	4.19	231
[(dmbpy) ₂ Ru(4Mebpy-P4₂-bpy4Me)-	AN	463	21480	658 c	1140 d	0.076 d			231
Ru(4DCE-bpy) ₂] ⁴⁺	Et/Met						634 c	5.31	231
FeRu ₃									
[Fe{(4Mebpy-P4₂-bpy4Me)Ru(bpy) ₂ } ₃] ^{8+†}	MeOH/H ₂ O			610 u	38 a	0.0173 a		0.100	222
Ru ₄									
[Ru{(4Mebpy-P4₂-bpy4Me)-	AN	417	60260	599 с	770 d	0.041 d			231
$Ru(dmbpy)_2\}_3]^{8+}$	Et/Met						621 c	4.10	231
[Ru{(4Mebpy-P4₂-bpy4Me)-	AN	483	72440	662 c	970 d	0.044 d			231
$Ru(4DCE-bpy)_2\}_3]^{8+}$	Et/Met						641 c	4.74	231
	B. Ele	ctrocł	nemical Data	a					

compound	solvent	RE	E_{ox} , V $[n]$ (site)	$E_{\rm red}$, V [<i>n</i>] (site)	ref(s)
Ru ₂					
[(dmbpy) ₂ Ru(4Mebpy-P4₀-bpy4Me)Ru(dmbpy) ₂] ⁴⁺	AN	SSCE	+1.13 [2] (Ru)	-1.28 (BL), -1.40, -1.58	228
$[(bpy)_2 Ru(4Mebpy-P4_2-bpy4Me)Ru(biq)_2]^{4+1}$	AN	SSCE	+1.22 [1] (Ru-bpy),	-0.85 [1] (biq), -1.08 [1] (biq),	229
			+1.35 [1] (Ru-biq)	-1.38 [1] (bpy)	
[(dmbpy) ₂ Ru(4Mebpy-P4₂-bpy4Me)Ru(dmbpy) ₂] ⁴⁺	AN	SSCE	+1.11 [2] (Ru)	-1.46, -1.65	231
[(dmbpy) ₂ Ru(4Mebpy-P4₂-bpy4Me)Ru(4DCE-bpy) ₂] ⁴⁺	AN	SSCE	+1.11 [1] (Ru),	-0.96, -1.15, -1.46	231
			+1.42 [1] (Ru)		
Ru ₄					
[Ru{(4Mebpy-P4₂-bpy4Me)Ru(dmbpy) ₂ } ₃] ⁸⁺	AN	SSCE	+1.11 [4] (Ru)	-1.46, -1.63	231
[Ru{(4Mebpy-P4₂-bpy4Me)Ru(4DCE-bpy) ₂ } ₃] ⁸⁺	AN	SCE	+1.11 [3] (Ru _p),	overlapping waves	231
			+1.42 [1] (Ru _c)§		

 † Prepared in situ. $^\$$ Ru_c and Ru_p indicate central and peripheral Ru, respectively.

4Mebpy-P4_n-bpy4Me

Table 9.23

4Mebpy-E4_B-bpy4Me

	· · · · ·	5							
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$ \begin{array}{l} \mathbf{Ru}_{2} \\ [(dmbpy)_{2}\mathrm{Ru}(\mathbf{4Mebpy}\cdot\mathbf{E4}_{B}\cdot\mathbf{bpy4Me})\mathrm{Ru}(dmbpy)_{2}]^{4+} \\ \mathbf{Re}_{2} \end{array} $	AN	460	37150	617 c	820 d	0.001 d			232
$[(CO)_3(AN)Re(4Mebpy-E4_B-bpy4Me)Re(AN)(CO)_3]^{2+}$	AN Et/Met	400 443	25550	695 c	4680 d	<10 ⁻⁴	695 c 22.7†	1.5	233 233

798 Chemical Reviews, 1996, Vol. 96, No. 2

Balzani et al.

Table 9.23 (Continued)

B. Electrochemical Data										
compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site)	$E_{\rm red}$, V [n] (site)	ref(s)					
$\label{eq:response} \begin{array}{l} \mathbf{Ru_2} \\ [(dmbpy)_2 \mathrm{Ru}(\mathbf{4Mebpy}\text{-}\mathbf{E4_B}\text{-}\mathbf{bpy4Me})\mathrm{Ru}(dmbpy)_2]^{4+} \\ \mathbf{Re_2} \\ [(\mathrm{CO})_3(\mathrm{AN})\mathrm{Re}(\mathbf{4Mebpy}\text{-}\mathbf{E4_B}\text{-}\mathbf{bpy4Me})\mathrm{Re}(\mathrm{AN})(\mathrm{CO})_3]^{2+} \end{array}$	AN AN	SSCE SSCE	+1.10 [2] (Ru) +1.84 i [1] (Re)	-1.26 [1] (BL) -1.09 [1] (BL)	232 233					
[†] Biexponential decay.										

Table 9.24

4Mebpy-ch4-bpy4Me	4Mebpy-ch4-bpy4Me	EO ₂ C CO ₂ EI
-------------------	-------------------	--------------------------------------

A. Photophysical Data									
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\label{eq:relation} \begin{array}{l} Ru_2 \\ [(dmbpy)_2 Ru(4 Mebpy-ch4-bpy4 Me) Ru(dmbpy)_2]^{4+} \end{array}$	AN Et/Met	460	25700	628 c	1060 d	0.092 d	593 с	4.61	228 228
В	6. Electro	chemi	cal Data						
compound	solven	t I	RE E _{ox} ,	V [<i>n</i>] (site	e)	$E_{\rm red}$, V [4	n] (site)		ref(s)
$\label{eq:response} \hline \\ Ru_2 \\ [(dmbpy)_2Ru(4Mebpy-ch4-bpy4Me)Ru(dmbpy)_2]^{4+} \\ \end{cases}$	AN	S	SCE +1.1	l3 [2] (Ru) -1.	37 (BL), -	-1.59, -1.3	82	228

Table 9.25

bpy-E5_A-bpy

A. Photophysical Data											
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
Ru ₂											
$[(bpy)_2Ru(bpy-E5_A-bpy)Ru(bpy)_2]^{4+}$	AN BuCN	451	26800	628 u	209 a	0.014 a	604 u	4.46	120,234,235 120,234,235		
$[(bpy)_2Ru^{III}(bpy-E5_A-bpy)Ru(bpy)_2]^{5+}$ RuOs	AN			628 u	0.94 a				120		
[(bpy) ₂ Ru(bpy-E5_A-bpy)Os(bpy) ₂] ⁴⁺	AN	595	3500 740 u	625 u 39 a	18 a 0.0023 a	0.0014 a			120,234,235		
	BuCN						601 u 723 u	0.031 1.0	120, 234, 235		
$[(bpy)_2Ru(bpy-E5_A-bpy)Os^{III}(bpy)_2]^{5+}$ Os ₂	AN			625 u	0.115 a				120		
$[(bpy)_2Os(bpy-E5_A-bpy)Os(bpy)_2]^{4+}$	AN BuCN	595	6100	740 u	40 a	0.0023 a	727 u	0.89	120,234,235 120,234,235		
$[(bpy)_2Os(bpy-E5_A-bpy)Os^{III}(bpy)_2]^{5+}$	AN			740 u	0.200 a				120		

B. Electrochemical Data

compound	solvent	RE	E_{ox} , V [<i>n</i>] (site)	E_{red} , V [n] (site)	ref(s)						
$\begin{array}{l} \textbf{Ru_2} \\ [(bpy)_2Ru(\textbf{bpy-E5_A-bpy})Ru(bpy)_2]^{4+} \end{array}$	AN	SCE	+1.25 [2] (Ru)	-1.31 [2] (bpy) [†]	120,234,235						
RuOs $[(bpy)_2Ru(bpy-E5_A-bpy)Os(bpy)_2]^{4+}$	AN	SCE	+0.81 [1] (Os), +1.25 [1] (Ru)	-1.30 [2] (bpy)†	120,234,235						
$[(bpy)_2Os(bpy-E5_A-bpy)Os(bpy)_2]^{4+}$	AN	SCE	+0.81 [2] (Os)	$-1.25~[2]~(bpy)^{\dagger}$	120,234,235						
$^{\dagger}\text{Two}$ irreversible processes follow at	more negat	ive poten	tial.								

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{c} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[(bpy) ₂ Ru(bpy-a-bpy)Ru(bpy) ₂] ⁴⁺	AN BuCN	≈460 f		625 u	210 a	$1.6 imes10^{-2}$ a	598 u	4.8	236 236
RuOs									
$[(bpy)_2Ru(bpy-a-bpy)Os(bpy)_2]^{4+}$	AN	pprox670 sh f		626 u	1.7 a	1.3×10^{-4} a			236
	BuCN			730 u	30 a	2.4 × 10 ° d	595 u 720 u	0.05 1.1	236
$[(bpy)_2Ru(bpy-a-bpy)Os^{III}(bpy)_2]^{5+}$	AN			620 u	0.35 a				236
Os ₂									
[(bpy) ₂ Os(bpy-a-bpy)Os(bpy) ₂] ⁴⁺	AN BuCN	\approx 670 sh f		738 u	39 a	$2.4 imes10^{-3}$ a	725 u	1.0	236 236
$[(bpy)_2Os(bpy-a-bpy)Os^{III}(bpy)_2]^{5+}$	AN			735 u	0.25 a				236
		B. Elect	trochemical	Data					
compound	solve	ent RE]	<i>E</i> _{ox} , V [<i>I</i>	n] (site)	$E_{\rm red}$	V [n] (site)		ref(s)
Ru ₂									
[(bpy) ₂ Ru(bpy-a-bpy)Ru(bpy) ₂] ⁴⁺	AN	J SCI	E +1.27	[2] (Ru)		-	-1.29 [2]		236
RuOs									
[(bpy) ₂ Ru(bpy-a-bpy)Os(bpy) ₂] ⁴⁺	AN	I SCI	E +0.80	[1] (Os),	+1.26 [1] (F	₹u) –	-1.27 [2]		236
Os ₂ [(bpy) ₂ Os(bpy-a-bpy)Os(bpy) ₂] ⁴⁺	AN	I SCI	E +0.80	[2] (Os)		-	-1.25 [2]		236

Table 9.27

A. Photophysical Data

compound	solvent	abs (nm)	$(\mathrm{M}^{-1} \mathrm{cm}^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[(bpy)2Ru(bpy-aa-bpy)Ru(bpy)2] ⁴⁺	AN	pprox460		621 u	217 a	$1.4 imes 10^{-2}$ a			236
	BuCN						600 u	4.6	236
Os ₂									
[(bpy) ₂ Os(bpy-aa-bpy)Os(bpy) ₂] ⁴⁺	AN	pprox670 sh		732 u	44 a	$2.4 imes10^{-3}~\mathrm{a}$			236
	BuCN						723 u	1.1	236
$[(bpy)_2Os(bpy-aa-bpy)Os^{III}(bpy)_2]^{5+}$	AN			735 u	1.1 a				236
		B. Elect	trochemical I	Data					
compound	s	olvent	RE	$E_{\rm ox}$, V	[<i>n</i>] (site)	<i>E</i> _{red} , V [<i>r</i>	ı] (site)	r	ef(s)
Ru ₂									
$[(bpy)_2Ru(bpy-aa-bpy)Ru(bpy)_2]^{4+}$		AN	SCE	+1.25	[2] (Ru)	-1.29	[2]		236
Os ₂									
$[(bpy)_2Os(bpy-aa-bpy)Os(bpy)_2]^{4+}$		AN	SCE	+0.81	[2] (Os)	-1.21	[2]		236

bpy-E5 _B -bpy		
--------------------------	--	--

	A. Pho	tophysical D	ata					
solvent	abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
AN	452		635 с	231 a	0.015 a			235,237
AN	484 sh		638 c	22 a	0.0013 a			235,237
			787 с	29 a	0.0018 a			
AN	484		787 с	29 a	0.0018 a			235,237
	B. Elect	rochemical	Data					
solven	t RE	3	<i>E</i> _{ox} , V [<i>n</i>]	(site)	Ere	_d , V [<i>n</i>] (si	te)	ref(s)
AN	SC	E +1.28	[2] (Ru)					235.237
AN	SC	E +0.84	[1] (Os), +	1.27 [1] (Ru)			235,237
AN	SC	E +0.84	[2] (Os)					235,237
	solvent AN AN AN Solven AN AN AN	A. Pho solvent abs (nm) AN 452 AN 484 sh AN 484 B. Elect Solvent RE AN SC AN SC	A. Photophysical Dsolvent $abs (nm)$ $\epsilon (M^{-1} cm^{-1})$ AN452484 shAN484 sh484AN484484B. Electrochemical DsolventREANSCE+1.28ANSCE+0.84ANSCE+0.84	A. Photophysical Dataabs solvent ϵ (M ⁻¹ cm ⁻¹) Em_{RT} (nm)AN452635 cAN484 sh638 c 787 cAN484787 cAN484787 cAN8E $E_{ox}, V [n]$ ANSCE+1.28 [2] (Ru)ANSCE+0.84 [1] (Os), +ANSCE+0.84 [2] (Os)	A. Photophysical Datasolvent $abs (nm)$ $\epsilon (M^{-1} cm^{-1})$ $Em_{RT} (nm)$ $\tau_{RT} (ns)$ AN 452 $635 c$ $231 a$ AN $484 sh$ $638 c$ $787 c$ $22 a$ $29 a$ AN 484 $787 c$ $29 a$ AN 484 $787 c$ $29 a$ B. Electrochemical DataAN SCE $+1.28 [2] (Ru)$ AN SCE $+0.84 [1] (Os), +1.27 [1] (Data)$ AN SCE $+0.84 [2] (Os)$	A. Photophysical Data solvent $abs (nm)$ $\epsilon (M^{-1} cm^{-1})$ $Em_{RT} (nm)$ $\tau_{RT} (ns)$ Φ_{RT} AN 452 635 c 231 a 0.015 a AN 484 sh 638 c 22 a 0.0013 a AN 484 sh 787 c 29 a 0.0018 a AN 484 RE $Electrochemical Data$ $Electrochemical Data$ AN SCE +1.28 [2] (Ru) $Electrochemical Data$ $Electrochemical Data$ AN SCE +0.84 [1] (Os), +1.27 [1] (Ru) AN SCE +0.84 [2] (Os)	A. Photophysical Datasolvent $abs (nm)$ $\epsilon (M^{-1} cm^{-1})$ $Em_{RT} (nm)$ $\tau_{RT} (ns)$ Φ_{RT} $Em_{77K} (nm)$ AN 452 $635 c$ $231 a$ $0.015 a$ AN $484 sh$ $638 c$ $22 a$ $0.0013 a$ AN $484 sh$ $787 c$ $29 a$ $0.0018 a$ AN 484 RE $Electrochemical Data$ $Electrochemical Data$ AN 884 RE E_{ox} , $V[n]$ (site) E_{red} , $V[n]$ (site)AN SCE $+1.28 [2] (Ru)$ $Ered$ $V[n]$ (site)AN SCE $+0.84 [1] (Os)$, $+1.27 [1] (Ru)$ AN AN SCE $+0.84 [2] (Os)$ $Ered$ $Ered$	A. Photophysical Data solvent $abs (nm)$ $\epsilon (M^{-1} cm^{-1})$ $Em_{RT} (nm)$ $\tau_{RT} (ns)$ $Em_{7TK} (nm)$ $\tau_{77K} (nm)$ AN 452 $635 c$ $231 a$ $0.015 a$ $= 1000000000000000000000000000000000000$

Table 9.29

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{c} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
$\begin{array}{l} \textbf{RuOs} \\ [(bpy)_2Ru(\textbf{bpy-A5}_A\textbf{-bpy})Os(bpy)_2]^{4+} \end{array}$	AN	451	2058	640 u 770 u	2.1 d 16 d				238,239		
$\begin{array}{l} \mathbf{Os_2} \\ [(bpy)_2 \mathrm{Os}(\mathbf{bpy}\mathbf{-A5_A}\mathbf{-bpy})\mathrm{Os}(bpy)_2]^{4+} \end{array}$	AN			770 u	18 d				238		

Table 9.30

bpy-bpy $\langle N_{N} - \langle N_{N$

	A. Photophysical Data											
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)			
Ru ₃ [{Ru(bpy) ₂ } ₃ (bpy-bpy-bpy)] ⁶⁺	AN	470		715					240			

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[{Ru(bpy) ₂ (bpy -)} ₂ A5 _B -bpy] ⁴⁺	AN	451	24700	640 u	200 a				241,242
	AIN BuCN			650 u	205 a		595 11	37	243 243
[{Ru(bpy) ₂ (5CE-bpy-)} ₂ A5 _B -(5CE-bpy)] ⁴⁺	AN	488 sh	16000				000 u	0.1	113,244
	nitrile			702 u	60 a	0.0036 a	654 u	1.3	113,244
Ru ₃									
[{Ru(bpy) ₂ (bpy -)} ₃ A5 _B] ⁶⁺	AN	450	38100	640 u	200 a				241,242
	BuCN						595 u	3.8	243
[(Du(hnu) (5CE hnu)] A5]6+	AN	190 ch	20600				595 U	4.2	241,242
[{Ku(Dpy)2(3CE-Dpy-)}3A 3B]**	nitrile	409 811	20000	702 11	60 a	0 0032 a	654 11	13	113,244
Ru ₂ Os	merne			702 u	00 u	0.000£ u	004 u	1.0	110,~11
$[{Ru(bpy)_2(bpy-)}_2A5_B-(bpy)Os(bpy)_2]^{6+}$	AN	450	36300	642 u	185 a				241,242
				780 u	24 a				,
	nitrile						595 u	t	241,242
							720 u	0.70	
	4.5.7	0.40	0500	700	05				041 040
$[{Os(Dpy)_2(Dpy-)}_3A5_B]^{0+}$	AN BuCN	642	9500	780 u	25 a		790	0.69	241,242
	nitrilo						720 11	0.00	243 941 949
	mune						720 u	0.00	641,646
	B.]	Electroc	hemical Data	a					
compound	solven	t RE	E	E _{ox} , V [<i>n</i>]	(site)	$E_{ m r}$	ed, V [<i>n</i>] (s	site)	ref(s)
Ru ₂									
$[{Ru(bpy)_2(bpy-)}_2A5_B-bpy]^{4+}$	AN	SCE	+1.30 [2]	(Ru)		-	-1.19 (BL	.)§	241,242
$[{Ru(bpy)_2(5CE-bpy-)}_2A5_B-(5CE-bpy)]^{4+}$	AN	SCE	+1.36 [2]	(Ru)		-	-0.91 (BL	.)‡	113
Ru ₃									
[Ru(bpy) ₂ (bpy -)} ₃ A5 _B] ⁶⁺	AN	SCE	+1.31 [3]	(Ru)		-	-1.18 (BL	.)§	241,242
$[{Ru(bpy)_2(5CE-bpy-)}_3A5_B]^{6+}$	AN	SCE	+1.35 [3]	(Ru)			-0.90 (BL	7)1	113
Ru_2Os		0.07			1 00 [0]		1 10 (51	18	041.040
$[{Ku(Dpy)_2(Dpy-)}_2A5_B-(Dpy)Us(Dpy)_2]^{b+}$	AN	SCE	. +0.865 []	1] (Us), +	-1.30 [2] ((Ru)	-1.16 (BL	γ_{s}	241,242
$\mathbf{U}\mathbf{s}_3$ [{Os(hnv) ₂ (hnv -)} ₂ A5 _P] ⁶⁺	AN	SCF	+0 870 [3] (Os)			-1 14 (BI	.)§	241 242
[[[B]][[B]]][[B]]	1 11 1	DUL	1 0.070 [03)			1.14 (DL	-,	~11,~1~

 † Not measurable because of strong overlap with the more intense Os-based emission. $^\$$ Two irreversible processes follow at more negative potential. ‡ Other irreversible processes follow at more negative potential, due to terminal bpy ligands.

A. Photophysical Data

compound	solvent	abs (nm)	$(\mathrm{M}^{-1}\overset{\epsilon}{\mathrm{cm}^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₃									
[{Ru(bpy) ₂ (bpy -)} ₃ A5 _C] ⁶⁺	AN nitrile	450	37300	640 u	210 a		595 u	4.4	241,242 241,242
$[\{Ru(bpy)_2(bpy-)\}_2A5_C-(bpy)Ru^{III}(bpy)_2]^{7+}$ Ru ₂ Os	AN			640 u					241
[{Ru(bpy) ₂ (bpy -)} ₂ A5 _C -(bpy)Os(bpy) ₂] ⁶⁺	AN nitrile	450	35330	$640 \mathrm{u}^{\dagger}$	$200 a^{\dagger}$		595 u 720 u	4.0 0.60	241,242 241,242
Os ₃									
[{Os(bpy) ₂ (bpy -)} ₃ A5 _C] ⁶⁺	AN nitrile	642	8800	780 u	25 a		720 u	0.67	241,242 241,242
$[{Os(bpy)_2(bpy-)}_2A5_C-(bpy)Os^{III}(bpy)_2]^{7+}$	AN			780 u					241
	B. I	Electroc	hemical Data	1					

	D . L		cinical Data		
compound	solvent	RE	$E_{\rm ox}$, V [<i>n</i>] (site)	E_{red} , V [n] (site)	ref(s)
Ru ₃ [{Ru(bpy) ₂ (bpy-)} ₃ A5 _C] ⁶⁺	AN	SCE	+1.31 [3] (Ru)	-1.17 (BL)‡	241,242
Ru₂Os [{Ru(bpy) ₂ (bpy -)} ₂ A5 _C -(bpy)Os(bpy) ₂] ⁶⁺	AN	SCE	+0.880 [1] (Os), +1.31 [2] (Ru)	-1.14 (BL) [‡]	241,242
Os ₃ [{Os(bpy) ₂ (bpy-)} ₃ A5 _C] ⁶⁺	AN	SCE	+0.865 [3] (Os)	-1.15 (BL) [‡]	241,242

 † Emission from Os-based unit not measurable because it is covered by the much more intense Ru-based emission. ‡ Two irreversible processes follow at more negative potential.

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)	
Re₂ [Br(CO) ₃ Re(QP)Re(CO) ₃ Br]	DMF	370 sh		583 u	96 d	0.016 d	520 u	7.0	245	
B. Electrochemical Data										
compound	SO	lvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site)	$E_{ m red}$, V	V [<i>n</i>] (site)		ref(s)	
$\begin{array}{l} \mathbf{Re_2} \\ [\mathrm{Br(CO)_3Re}(\mathbf{QP})\mathrm{Re}(\mathrm{CO})_3\mathrm{Br}] \end{array}$	A D	N MF	SCE SCE	+0.9	98	-1	.45 (BL)		245 245	

5,5'-dmbpy-E6-5,5'-dmbpy										
A. Photophysical Data										
compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ s)	ref(s)	
$\begin{array}{l} \textbf{Ru}_{2} \\ [(bpy)_{2}Ru(\textbf{5,5'-dmbpy-E6-5,5'-dmbpy})Ru(bpy)_{2}]^{4+} \end{array}$	AN	445	23000	618 u					246	

Table 9.35

A. Photophysical Data

* V											
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm}^{-1})$	Em _{RT} (nm)		$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
Ru₂ [(bpy) ₂ Ru(QP _B)Ru(bpy) ₂] ⁴⁺	AN	471	22000	685	2000				247		
B. Electrochemical Data											
compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site	e)	-	E _{red} , V [<i>n</i>]	(site)		ref(s)		
$\begin{array}{l} \mathbf{Ru_2} \\ [(bpy)_2 \mathrm{Ru}(\mathbf{QP_B}) \mathrm{Ru}(bpy)_2]^{4+} \end{array}$	AN	SCE	+1.24 [2] (Ru	l)	-1.10 [1] (BI -1.57 [1] (L), -1.44 bpy), -1.	[1] (bpy), 64 [1] (adsorpt	tion)	247		

Table 9.36

	6Mebpy-	86 ₂ -bpy6M			$\rightarrow N = $				
		A. P	hotophysical	Data					
compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Cu₂ [Cu(6Mebpy-S6₂-bpy6Me) ₂ Cu] ²⁺	CH ₂ Cl ₂	445	8760	670 u	13 d	$4\times 10^{-5}d$	690 u	0.335	248
		B. El	ectrochemical	l Data					
compound	so	olvent	RE	Eox, V	[<i>n</i>] (site)	$E_{\rm red}$,	V [<i>n</i>] (site)		ref(s)
Cu ₂ [Cu(6Mebpy-S6 ₂ -bpy6Me) ₂ Cu] ²⁺		AN	SCE	+0	.88 [2]		-1.68 i		249

Table 9.37

		N	-bpy ₃							
A. Photophysical Data										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								ref(s)		
Ru ₃ [{Ru(bpy) ₂ } ₃ (N-bpy ₃)] ⁶⁺	AN	446	33000	610 u					250	
[{Cl(CO) ₃ Re} ₃ (N-bpy₃)]	AN	360	6490	598 u					250	

804 Chemical Reviews, 1996, Vol. 96, No. 2

Table 9.37 (Continued)

		B. Electroc	hemical Data		
compound	solvent	RE	E_{ox} , V [n] (site)	$E_{\rm red}$, V [<i>n</i>] (site)	ref(s)
Ru ₃ [{Ru(bpy) ₂ } ₃ (N-bpy ₃)] ⁶⁺	AN	SCE	+1.36	-1.20, -1.41, -1.68	250
$[{Cl(CO)_{3}Re}_{3}(N-bpy_{3})]$	AN	SCE	+1.37 i (Re)	-1.44	250

Table 9.38

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm}^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Eu ₂									
$[Eu_2(hacod-bpy_6)]^{6+}$	AN	306	49000	578 u	$730 a^{\dagger}$	0.020 a		1020^{\dagger}	251
	D_2O				1890 a†			1780^{+}	251
	H_2O	285	54000		$230 a^{\dagger}$	0.002 a		300 [†]	251
Gd ₂									
[Gd ₂ (hacod-bpy ₆)] ⁶⁺	AN	306	52000				455 u	1800 [§]	251
	Et/Met	286	51000				455 u	3900 [§]	251
	H_2O	285	51000				455 u	2400 [§]	251
Tb ₂									
[Tb ₂ (hacod-bpy ₆)] ⁶⁺	AN	306	60400	488 u	$1360 a^{\dagger}$	0.015 a		1740^{\dagger}	251
	D_2O				$1560 a^{\dagger}$			2120^{\dagger}	251
	H_2O	285	59200		$700 a^{\dagger}$	0.003 a		710^{\dagger}	251
[†] Metal centered excited	state. § Liga	and cente	red excited stat	te.					

Table 9.39

	A, F II	otopiiys	lical Data						
compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\begin{array}{l} \textbf{Ru}_{2} \\ [(bpy)_{2}Ru(\textbf{pbpy-Ph-E}_{1}\textbf{-Ph-pbpy})Ru(bpy)_{2}]^{4+} \\ [(bpy)_{2}Ru(\textbf{pbpy-Ph-E}_{2}\textbf{-Ph-pbpy})Ru(bpy)_{2}]^{4+} \\ \hline CuRu_{2} \end{array}$	AN AN	455 455	19300 24900	639 u 640 u					246 246
$[Cu{(pbpy-Ph-E_1-Ph-pbpy)Ru(bpy)_2}_2]^{5+}$ $[Cu{(pbpy-Ph-E_2-Ph-pbpy)Ru(bpy)_2}_2]^{5+}$	MeOH MeOH	455 454	28200 28600	639 u 643 u					246 246

Table 9.40

bpy _a -bpy _b	
------------------------------------	--

			1 5						
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$ \begin{array}{l} \textbf{Ru}_2 \\ [(bpy)_2 Ru(\textbf{bpy}_a\textbf{-bpy}_b) Ru(bpy)_2]^{4+} \end{array} $	AN	448	21000	674 u	232 a	$1.9 imes 10^{-2} ext{ a}$			252
	BuCN DMF/CH ₂ Cl ₂	452	23000	656 u	340 a	$2.2 imes 10^{-2}$ a	612 u 615 u	5.7 5.3	252 253

Polynuclear Transition Metal Complexes

 $\begin{array}{c} \mathbf{Os_2} \\ [(bpy)_2 \mathbf{Os}(\mathbf{bpy_a} \mathbf{-bpy_b}) \mathbf{Os}(bpy)_2]^{4+} \\ \hline \end{array}$

-1.39 (BL), -1.63 (bpy), -1.81 (bpy)

252

Table 9.40 (Continued)

compound	solve	ent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
RuRe										
$[(bpy)_2Ru(bpy_a-bpy_b)Re(CO)_3Cl]^{2+}$	DMF/C	H_2Cl_2	456	14000	644 u	410 a	$2.8 imes10^{-2}~\mathrm{a}$	607 u	4.7	253
$[(bpy)_2Ru(bpy_b-bpy_a)Re(CO)_3Cl]^{2+}$	DMF/C	H_2Cl_2	453	13000	623 u	23 a	$1.4 imes10^{-3}\mathrm{a}$	590 u	5.8	253
RuOs										
[(bpy) ₂ Ru(bpy_a-bpy_b)Os(bpy) ₂] ⁴⁺	AN		646	2700	756 u	41 a	$3.2 imes10^{-3}\mathrm{a}$			252
	BuCN							716 u	1.5	252
$[(bpy)_2Ru(bpy_b-bpy_a)Os(bpy)_2]^{4+}$	AN		690	2800	808 u	26 a	$1.3 imes10^{-3}\mathrm{a}$			252
	BuCN							756 u	1.0	252
Re ₂										
[Cl(CO) ₃ Re(bpy _a - bpy _b)Re(CO) ₃ Cl]	DMF/C	H ₂ Cl ₂	385	8000	622 u	9 a	$5.3 imes10^{-4}~\mathrm{a}$	548 u	2.7	253
Os ₂										
[(bpy) ₂ Os(bpy_a-bpy_b)Os(bpy) ₂] ⁴⁺	AN		650	5700	814 u	21 a	$8.8 imes10^{-4}~\mathrm{a}$			252
	BuCN							756 u	1.2	252
		В	. Elect	rochemical	Data					
compound	solvent	RE		<i>E</i> _{ox} , V [<i>n</i>]	(site)		$E_{\rm red}$, V	[<i>n</i>] (site)		ref(s)
Ru ₂										
$[(bpv)_2Ru(bpv_a-bpv_b)Ru(bpv)_2]^{4+}$	AN	Fc/Fc	+ +0.9	99 [1] (Ru). +	1.06 [1] (Ru) —	1.46 (BL)1.7	3 (bpv). –	1.86 (bpv)	252
RuRe						,		(° 1)//	(1)	
$[(bpy)_2Ru(bpv_a-bpv_b)Re(CO)_3Cl]^{2+}$	AN	Fc/Fc	+ +0.9	93 [1] (Ru), +	1.17 [1] (Re) –	1.56, -1.77, -1	.99		253
$[(bpy)_2Ru(bpy_b-bpy_a)Re(CO)_3Cl]^{2+}$	AN	Fc/Fc	+ +1.0	04 [2] (Ru + I	Re)	´ —	1.49, -1.77, -1	.98		253
RuOs										
$[(bpy)_2Ru(bpy_a-bpy_b)Os(bpy)_2]^{4+}$	AN	Fc/Fc	+ +0.6	60 [1] (Os), +	1.05 [1] (1	Ru) —	1.43 (BL), -1.6	6 (bpy), –	1.85 (bpy)	252
$[(bpy)_2Ru(bpy_b-bpy_a)Os(bpy)_2]^{4+}$	AN	Fc/Fc	+ +0.5	57 [1] (Os), +	1.09 [1] (1	Ru) —	1.42 (BL), -1.7	1 (bpy), –	1.83 (bpy)	252
Re ₂				/ //						
$[Cl(CO)_{3}Re(\mathbf{bpy_{a}}\mathbf{-bpy_{b}})Re(CO)_{3}Cl]$	AN	Fc/Fc	+ +0.9	98 [1] (Re), +	1.10 [1] (1	Re) –	1.55 i (BL), -1.	66 i (BL)		253

AN

 Fc/Fc^+

+0.56 [1] (Os), +0.65 [1] (Os)

Table 9.41

compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ($\mu\mathbf{s}$)	ref(s)
$ \mathbf{Ru}_{2} \\ [(bpy)_{2}Ru(\mathbf{FAF})Ru(bpy)_{2}]^{4+} $	AN BuCN	≈450 f	≈22100 f	605 u	0.300 a		577 u	5.5	79 79
RuOs [(bpy) ₂ Ru(FAF)Os(bpy) ₂] ⁴⁺	AN	≈655 f	≈2600 f	605 u 720 u	0.290 a 40 a				79
[(bpy) ₂ Ru(FAF)Os ^{III} (bpy) ₂] ⁵⁺	BuCN AN				0.240 a		577 u 703 u	0.0039 1.1	79 79
$0s_2 \\ [(bpy)_2Os(FAF)Os(bpy)_2]^{4+}$	AN BuCN	≈655 f	≈4700 f	720 u	41 a		710 u	1.1	79 79
$[(bpy)_2Os(\textbf{FAF})Os^{III}(bpy)_2]^{5+}$	AN	D D			2.4 a				79
		B. E.	lectrochemic	al Data					
compound	solvent	RE		<i>E</i> _{ox} , V [<i>n</i>]	(site)		$E_{\text{red}}, V[n]$ (site)	ref(s)
Ru ₂ [(bpy) ₂ Ru(FAF)Ru(bpy) ₂] ⁴⁺	AN	SCE	+1.265	[2] (Ru)			-1.285 [2]	79
$[(bpy)_2Ru(FAF)Os(bpy)_2]^{4+}$ Os ₂	AN	SCE	+0.800	[1] (Os), +	-1.260 [1] (Ru))	-1.275 [2]	79
$\tilde{[(bpy)_2Os(FAF)Os(bpy)_2]^{4+}}$	AN	SCE	+0.800	[2] (Os)			-1.245 [2]	79

A. Photophysical Data

			10						
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂ [(bpy) ₂ Ru(dpop)Ru(bpy) ₂] ⁴⁺	AN	775 sh	\approx 5000 f	>950					254
		B. I	Electrochemical	Data					
compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site)		E_{red} ,	V [<i>n</i>] (site)		ref(s)
Ru ₂ [(bpy) ₂ Ru(dpop)Ru(bpy) ₂] ⁴⁺	AN	SCE	+1.49 [1] (Ru), -	+1.66 [1] (Ru) -	-0.18 [1] (E	BL), -0.90 [1] (BL)	254

Table 9.43

9	Mephen-S2 ₂ -	phen9Me			$ \longrightarrow_{N=2} $	>			
		A. Pho	tophysical Da	ata					
compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\label{eq:cu2} \begin{array}{c} \textbf{Cu2} \\ [Cu(\textbf{9Mephen-S22-phen9Me})_2Cu]^{2+} \end{array}$	CH_2Cl_2 Et/Met [†]	445	10900	663 u	16 d	1.0 × 10 ⁻⁴	⁴ d 672 u 692 c	1.89 1.6	248 255
		B. Elect	rochemical E	Data					
compound	S	olvent	RE	Eox	, V [<i>n</i>] ((site)	E _{red} , V [n] (site)		ref(s)
Cu ₂ [Cu(9Mephen-S2 ₂ -phen9Me) ₂ Cu] ²⁺	aceto AN AN CH ₂ / DMH DMS MeO nitro nitro	one Cl ₂ 7 60 9H 9benzene 9methane	SSCE SSCE SSCE SSCE SSCE SSCE SSCE SSCE	+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0	0.65 [2] (0.85 [2] (0.64 [2] (0.92 [2] (0.55 [2] (0.76 [2] (0.61 [2] (0.77 [2] (0.80 [2] ((Cu) (Cu) (Cu) (Cu) (Cu) (Cu) (Cu) (Cu)	−1.55 i		255 249 255 255 255 255 255 255 255 255
	nitro PC	omethane	SSCE SSCE	+0 +0 +0).80 [2] ().65 [2] ((Cu) (Cu)			255 255

 † Absorption data in several solvents are given in the original paper.

Table 9.44

m-45: $X = CH_2(CH_2OCH_2)_5CH_2$; $Z = (CH_2)_6$

			A. Photop	hysical Da	ita				
compound	solvent	abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Cu ₂									
$[Cu_2(m-43)_2]^{2+}$	CH ₂ Cl ₂	442	6200	745 с	170 d	$5.3 imes10^{-4}~ m d$	730 с		256
	CH ₂ Cl ₂ /MeOH							2.3	256
$[Cu_2(m-45)_2]^{2+}$	CH ₂ Cl ₂	437	6200	745 с	171 d	$5.5 imes10^{-4}~ m d$	740 с		256
	CH ₂ Cl ₂ /MeOH							2.7	256
			B. Electroc	hemical D	ata				
compound	solven	t	RE	Eox, V [<i>n</i>] (site)	E _{red} , V [<i>n</i>] (site)	1	ef(s)
Cu ₂									
$[Cu_2(m-43)_2]^{2+}$	AN		SCE	+0.55	i (Cu)				256

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Cu ₂									
[Cu ₂ (Knot-k-80)] ²⁺	CH_2Cl_2	437	6200	750 с	150 d	$3.7 imes10^{-4}~ m d$	755 с		256
	CH ₂ Cl ₂ /MeOH							2.6	256
[Cu(Knot-k-82)] ²⁺	CH_2Cl_2	440	6200	750 с	149 d	$3.7 imes10^{-4}~ m d$	770 с		256
	CH ₂ Cl ₂ /MeOH							1.2	256
[Cu ₂ (Knot-k-84)] ²⁺	CH_2Cl_2	431	6200	742 с	208 d	$7.2 imes10^{-4}~ m d$	750 с		256
	CH ₂ Cl ₂ /MeOH							0.9	256
[Cu ₂ (Knot-k-86)] ²⁺	CH_2Cl_2	439	6200	750 с	154 d	$4.1 imes10^{-4}~ m d$	750 с		256
	CH ₂ Cl ₂ /MeOH							0.9	256
[Cu ₂ (Knot-k-90)] ²⁺	CH_2Cl_2	434	6200	742 с	174 d	$5.5 imes10^{-4}~ m d$	755 с		256
	CH ₂ Cl ₂ /MeOH							1.2	256
			B. Electroche	mical Dat	a				
compound	solvent		RE	<i>E</i> _{0x} , V [n] (site)	$E_{ m red}$, V [2]	n] (site)	r	ef(s)
Cu ₂									
[Cu ₂ (Knot-k-84)] ²⁺	AN		SCE	+0.75	2] (Cu)				256
[Cu ₂ (Knot-k-86)] ²⁺	AN		SCE	+0.61	2] (Cu)				256

Table 9.46

solvent	abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
CH_2Cl_2	\approx 580sh f		735 с	168 d	$5.9 imes10^{-4}~ m d$	750 с	1.4	257
+ CH_2Cl_2	\approx 580sh f		457 с† 725 с [§]	0.090 d [†] 163 d [§]	0.0068 d†	730 с	1.7	257
+ CH ₂ Cl ₂	\approx 580sh f		735 с	162 d	$6.1 imes10^{-4}~ m d$	735 с	1.8	257
+ CH_2Cl_2						502 c	17000	257
	B. Electr	ochemical I	Data					
22	solvent ²⁺ CH ₂ Cl ₂ ³⁺ CH ₂ Cl ₂ ²⁺ CH ₂ Cl ₂ ²⁺ CH ₂ Cl ₂	abssolvent(nm) 2^+ CH_2Cl_2 3^+ CH_2Cl_2 3^+ CH_2Cl_2 2^+ CH_2Cl_2 2^+ CH_2Cl_2 2^+ CH_2Cl_2 B. Electr	$\begin{array}{c} \text{abs} & \stackrel{\epsilon}{(\text{nm})} & \stackrel{\epsilon}{(\text{M}^{-1} \text{ cm}^{-1})} \\ \end{array}$ $^{2+} & \text{CH}_2\text{Cl}_2 & \approx 580 \text{sh f} \\ ^{3+} & \text{CH}_2\text{Cl}_2 & \approx 580 \text{sh f} \\ ^{2+} & \text{CH}_2\text{Cl}_2 & \approx 580 \text{sh f} \\ ^{2+} & \text{CH}_2\text{Cl}_2 & \\ \hline & \textbf{B. Electrochemical I} \end{array}$	abs solvent ϵ (nm) Em_{RT} (M ⁻¹ cm ⁻¹) Em_{RT} (nm)2+ CH_2Cl_2 $\approx 580 sh f$ 735 c3+ CH_2Cl_2 $\approx 580 sh f$ 457 c [†] 725 c [§] 2+ CH_2Cl_2 $\approx 580 sh f$ 735 c2+ CH_2Cl_2 $\approx 580 sh f$ 735 c2+ CH_2Cl_2 $\approx 580 sh f$ 735 c2+ CH_2Cl_2 $=$ B. Electrochemical Data	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	abs solvent ϵ (nm) Em _{RT} (M ⁻¹ cm ⁻¹) τ_{RT} (nm) τ_{RT} Em _{77K} (nm) 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 168 d 5.9×10^{-4} d 750 c 3+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 457 c [†] 0.090 d [†] 0.0068 d [†] 730 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 162 d 6.1×10^{-4} d 735 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 162 d 6.1×10^{-4} d 735 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 162 d 6.1×10^{-4} d 735 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 162 d 6.1×10^{-4} d 735 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 162 d 6.1×10^{-4} d 735 c 2+ CH ₂ Cl ₂ $\approx 580 \text{sh}$ f 735 c 502 c 502 c B. Electrochemical Data	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

compound	solvent	RE	<i>E</i> _{ox} , V [<i>n</i>] (site)	E_{red} , V [n] (site)	ref(s)
Cu_2	A N 1	COL			070
[(cyclo-phen)Cu(caten)Cu(cyclo-phen)] ²	AN	SCE	+0.67 [1] (Cu)		258
[(cyclo-phen)Cu(caten)Ag(cyclo-phen)] ²⁺	CH_2Cl_2	SCE	+0.668 [1] (Cu)	-0.480 [1] (Ag)	258
[†] Excitation at 355 nm. § Excitation at 500 nr	m.				

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\begin{array}{l} \textbf{Cu_3} \\ [\{Cu(dtol-phen)\}_3(\textbf{cage-phen_3})]^{3+} \\ [\{Cu(2,9\text{-}Me_2\text{-}phen)\}_3(\textbf{cage-phen_3})]^{3+} \end{array}$	$\begin{array}{c} CH_2Cl_2\\ CH_2Cl_2 \end{array}$	437 443		730 с 760 с	170 d 50 d	$\begin{array}{l} 7.0 \times 10^{-4} d \\ 0.8 \times 10^{-4} d \end{array}$			259 259

Table 9.48

A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	Φ_{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
$[(bpy)_2Ru(\mathbf{PAP})Ru(bpy)_2]^{4+}$	AN	450	28000	610 u	145 a				80
-	BuCN						583 u	5.5	80
RuOs $(\mathbf{D} \wedge \mathbf{D}) \subset (\mathbf{d} \to M^{+})$	4 N T	4.40	00000	000	01				00
$[(\mathbf{D}\mathbf{P}\mathbf{Y})_2\mathbf{K}\mathbf{u}(\mathbf{P}\mathbf{A}\mathbf{P})\mathbf{O}\mathbf{S}(\mathbf{D}\mathbf{P}\mathbf{Y})_2]^{+1}$	AIN	449	28000	609 u 712 u	21 a 41 a				80
	BuCN			/12 u	41 a		581 u	0.041	80
	Bueit						705 u	1.2	00
Os ₂									
$[(bpy)_2Os(\mathbf{PAP})Os(bpy)_2]^{4+}$	AN	480	27800	717 u	41 a				80
	BuCN						709 u	1.0	80
		B. E	lectrochemi	cal Data					
compound	solvent	RE		<i>E</i> _{ox} , V [<i>n</i>]	(site)		<i>E</i> _{red} , V [<i>n</i>] ((site)	ref(s)
Ru ₂									
[(bpy) ₂ Ru(PAP)Ru(bpy) ₂] ⁴⁺	AN	SCE	+1.235	6 [2] (Ru)			-1.380 [2]	(bpy)	80
RuOs									
$[(bpy)_2Ru(\mathbf{PAP})Os(bpy)_2]^{4+}$	AN	SCE	+0.795	5 [1] (Os), +	1.240 [1] (Rı	1)	-1.345 [2]	(bpy)	80
Us_2	A N T	COL		$\left(0\right) \left(0_{-1}\right)$			1.007 [0]	(J)	00
$[(DPY)_2OS(PAP)OS(DPY)_2]^{4+}$	AIN	SCE	. +0.800	[z] (US)			-1.305 [2]	(вру)	80

Table 9.49

A. Photophysical Data abs (nm) Em_{RT} (nm) $\tau_{\rm RT}$ (ns) Em_{77K} (nm) τ_{77K} (μs) $(M^{-1} \overset{\epsilon}{cm^{-1}})$ compound ref(s) solvent Φ_{RT} FeRu [(CN)₄Fe(**2,3-dpp**)Ru(phen)₂] [(CN)₄Fe(**2,3-dpp**)Ru(phen)₂]⁺ 260 260 AN AN 476 700 u \approx 90 a 498 680 u 95 a Cu₂ $[(PPh_3)_2Cu(2,3-dpp)Cu(PPh_3)_2]^{2+}$ $CH_2Cl_2{}^{\ddagger}$ 261 418 5655650 u Et/Met 652 u 261

Table 9.49 (Continued)

compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
\mathbf{Ru}_2	AN	410	4500						262
[C12(CO)2Ku(2,3-upp)Ku(CO)2C12]	BuCN	410	4300				555 u	146	262
[(bpy) ₂ Ru(2,3-dpp)Ru(bpy) ₂] ⁴⁺	AN	523	22500	756 u	134 a				263
	AN	527	24200	802 c	102 a,	0.003 d			264
	ANT	590	94700	009	125 d				905
	AN	526	24700	802 u 790 c	120 140 d	0 025 d	702 c	2 38	200 200
	CH ₀ Cl ₀	519	24800	730 C	140 u 154 d	0.025 d	702 C	2.30	200
	EtOH	522	23400	753 u	84 d	0.000 u			200
	EtOH					0.0030 d			266
	EtOH	525	21700	800 c	80 d	0.0012 d			267
	Et/Met				~		709 c	2.00	264
	H_2O	525	21000	755 u	54 d	0.0070 -			266
	H_2O	530	27500	755 u 800 c	55 d	0.0070 a			200
	MeOH	525	25300	797 с	100 d	0.012 u			200
[(bpy) ₂ Ru(2,3-dpp)Ru(biq) ₂] ⁴⁺	AN	543	22400	799 с	75 d				264
	DMF	548	22800	760 c	175 d				269
	Et/Met						710 u	3.17	269
	Et/Met	500	07400	750	110		723 c	1.55	264
$[(\text{Dpy})_2\text{Ku}(\mathbf{Z},3\cdot\mathbf{dpp})\text{Ku}(\text{phen})_2]^*$	AN	523	27400	752 u	113 a				263
[(dcbpy112)2Kd(2,3-dpp)Kd(dcbpy112)2]	$H_{0}\Omega$ (nH = 0)	518	16600						200
	MeOH	530	10000	763 с	123 d		699 c	2.32	200
[(dcbpy) ₂ Ru(2,3-dpp)Ru(dcbpy) ₂] ⁴⁻	$H_2O (pH = 7)$	530	20800	778 c	87 d				200
$[(biq)_2 Ru(2,3-dpp) Ru(biq)_2]^{4+}$	AN	537	15600	789 с	65 d				264
	DMF	538	21200	746 c	232 d				269
	Et/Met						714 u	2.24	269
$[(nhon), Pu(9, 3, \mathbf{dnn}), Pu(nhon),]^{4+}$	AN	525	23400	746 11	153 2		720 C	1.73	204 263
[(pitei)2ru(2,3-upp)ru(pitei)2]	AN	526	22200	746 u	153 d				200
RuRh									
[(bpy) ₂ Ru(2,3-dpp)RhH ₂ (PPh ₃) ₂] ³⁺	acetone	488	13000	776	106	0.0092			203
[(bpy) ₂ Ru(2,3-dpp)Rh(bpy) ₂] ⁵⁺	AN	514		778 с	37				270
	CH_2CI_2	508		738 c	48		000 -	1 71	270
	EUMEL THE	528		786 c			632 C	1.71	270
RuPd	1111	520		700 0					210
$[(bpy)_2Ru(2,3-dpp)PdCl_2]^{2+}$	AN	501	14080	700 c	370				271
	Et/Met						700 с	4.0	271
		540	0570						070
$[(bpy)_2 Ru(2, 3-dpp) ReCI(CO)_3]^{2+}$	CH ₂ Cl ₂	512	9570	770 c			607	1.06	272
RuOs	EIOH						097 u	1.90	212
$[(bpv)_2Ru(2.3-dpp)Os(bpv)_2]^{4+}$	AN	542	28500						273
	DMF	534	21500	†					274
RuPt									
$[(bpy)_2Ru(2,3-dpp)PtMe_2]^{2+}$	acetone	524	12010	735 c	330				271
$[(bpy)_2Ru(2,3-dpp)PtCl_2]^{2+}$	acetone	500	15940	800 c	450				271
	AIN Ft/Met	309	15240	000 C	430		752 c	22	271
Re ₂	Lower						1020	2.2	~11
[Cl(CO) ₃ Re(2,3-dpp)Re(CO) ₃ Cl]	AN	454	8400						221
- · · · · · · · · · · ·	CH_2Cl_2	486	6320	790 с	≤20				272
0	EtOH						690 u	0.28	272
Us_2	ANT	E E E	91900						975
$[(\mathbf{D}\mathbf{p}\mathbf{y})_2 \cup \mathbf{S}(\mathbf{z}, 3 - \mathbf{d}\mathbf{p}\mathbf{p}) \cup \mathbf{S}(\mathbf{D}\mathbf{p}\mathbf{y})_2]^{*+}$	AIN	552 552	25200						276
	DMF	550	24000	+					274
	Et/Met	000	21000	'			928 c [§]		142
Ru ₃									
[(bpy)Ru{(2,3-dpp)Ru(bpy) ₂ } ₂] ⁶⁺	AN	545	23500	766 u	75 a	0.004.1			277
	AN Et/Mat			804 c	80 d	0.001 d	719	1 70	264
	Et/Met						712 u 721 c	1.70	264
[(bpy)Ru{(2.3-dnn)Ru(bia),3] ⁶⁺	AN	546	28700	742 11	142 a		1 21 L		277
· · · · · · · · · · · · · · · · · · ·	AN			773 c	•				264
	Et/Met						702 u	2.18	277
B O	Et/Met						713 с		264
$KUUS_{2}$ $[(hny)Bul(9.3 dnn)Oc(hny)] = 16+$	AN	550	36300						149
[[0µy]]tu[[&,3-uµµ]OS[0µy]2}2]°`	Et/Met	228	30300				896 c§		142

Table 9.49 (Continued)

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₄									
$[{\rm Ru}\{(2,3-dpp){\rm Ru}(bpy)_2\}_3]^{8+}$	AN	534 545	49600	772 811 c	89 50 a 60 d	0.001 d			138 264
	Et/Met	545	40000	0110	50 a, 00 u	0.001 u	727 с	1.38	264
$[(biq)_2 Ru(2,3-dpp) Ru\{(2,3-dpp)-$	AN			768 u	110 a		700	1 5	140
$[Ru{(Dpy)_{2}}]^{0^{+}}$ $[Ru{(2.3-dpp)Ru{bia}_{2}]^{8+}}$	Et/Met AN	610	41500	795 с	130 a. 190 d	0.001 d	720 u	1.5	140 264
	Et/Met				,		725 с	1.86	264
$[Ru\{(2,3-dpp)Ru(phen)_2\}_3]^{8+}$ $[Ru\{(2,3-dpp)Ru(tpy)Cl\}_2]^{5+}$	AN AN	539 564	51400 23800	760 758	87 84				138
$[Ru{(2,3-dpp)Ru(2,3-dpp)_2]_3]^{8+}$	AN	461	38200	730 722 с	300 d	$1 imes 10^{-4} \ d$			102
$[\mathbf{D}_{\mathbf{y}}](9, 2, \mathbf{d}_{\mathbf{p}}) \mathbf{D}_{\mathbf{y}}(2, 2, \mathbf{M}_{0}, \mathbf{d}_{\mathbf{p}}) \rightarrow 114+$	Et/Met	505 ch	20000	714 0	600 d	6 5 × 10-3 d	698 с	3.6	102
$[Ru{(2,3-app)Ru(2,3-meapp)_{2}]^{14}$	AN Et/Met	505 SH	38000	714 C	600 a	0.5 × 10 ° d	698 c	4.3	102
Ru ₃ Os		~							
[{(bpy)₂Ru(2,3-dpp)}₃Os]⁰ ⁺	AN Ft/Met	549	40000	875 c	18 d		802 c	0.41	137 137
$[{(2,3-Medpp)_2Ru(2,3-dpp)}_3Os]^{14+}$	AN	526		812 u	445 a		002 C	0.41	278
\mathbf{RuRh}_{3}		471	15400	001 .	220 4	0.010 J	C 45 a	1.05	144
$[Ru{(2,3-app)Rn(ppy)_2}_3]^{5}$	CH_2CI_2	4/1	15400	081 C	330 a	0.018 a	040 C	1.05 3.40	144
RuIr ₃									
$[Ru{(2,3-dpp)Ir(ppy)_2}_3]^{5+}$	CH_2CI_2	499	31500	812 c	2.2 d	$1.5 imes 10^{-4} ext{ d}$	726 c	0.57	144
OsRh ₃								1.71	
$[Os{(2,3-dpp)Rh(ppy)_2}_3]^{5+}$	CH_2Cl_2	515	23300	821 c	55 d	0.0058 d	789 с	0.62	144
$[Os{(2.3-dpp)Ir(ppv)_2}_3]^{5+}$	CH ₂ Cl ₂	534	25400	825 c	5.2 d	$4.5 imes10^{-4}\mathrm{d}$	810 c	0.43	144
Ru ₆									
$\{(bpy)_2Ru(2,3-dpp)\}_2Ru(2,3-dpp)-$ $Ru\{(2,3-dpp)Ru(bpy)_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	AN Et/Mot	540	59000	770 u	53 a		716 11	1 33	279 279
$[{(biq)_2Ru(2,3-dpp)_{2}Ru(bpy)_{2}}]$	AN	571	60200	760 u	80 a		/10 u	1.55	141
$Ru\{(2,3-dpp)Ru(biq)_2\}_2\}^{12+}$	Et/Met						716 u	1.5	141
$Ku_2Os_4 = \{(bpv)_9Os(2,3-dpp)\}_9Ru(2,3-dpp)-$	AN	560	81500						141
$Ru\{(2,3-dpp)Os(bpy)_2\}_2\}^{12+}$	Et/Met						912 c§		142
\mathbf{Ru}_7 [Ru{(2.3-dnn)Ru(hnv)(2.3-dnn)-	AN	547	76200	808	80 d	6 0000 d			280
$Ru(bpy)_{2}_{3}^{14+}$	Et/Met	017	10200	000	00 u	0.0000 u	725	2.0	280
\mathbf{Ru}_{10}	ANT	5 4 1	195000	000 -		0.001			901
$[Ru{(2,3-app)Ru[(2,3-app)-Ru(bpy)_2]_2}_3]^{20+}$	AN Et/Met	541	125000	809 C	55 d	0.001 d	732 с	1.3	281 281
[Ru{(2,3-dpp)Ru[(2,3-dpp)-	AN	555	109500	789 с	130 d	0.006 d			96
Ru(biq) ₂] ₂ } ₃] ²⁰⁺ [Ru{(2.3-dnn)Ru[(2.3-dnn)-	Et/Met AN	500 sh	30000	750 c	too weak	<3 × 10 ^{−5} d	722 c	1.65	96 102
$Ru(2,3-dpp)_2]_2\}_3]^{20+}$	Et/Met	000 311	00000	700 0	too weak		too	too	102
$[\mathbf{D}_{\mathbf{r}}](0,0,\mathbf{d}_{\mathbf{r}},\mathbf{r})]\mathbf{D}_{\mathbf{r}}[(0,0,\mathbf{d}_{\mathbf{r}},\mathbf{r})]$	ANT	550 sh	40000	660 .	600 J	2 0 · · 10-4 d	weak	weak	109
$[Ru{(2,3-app)Ru{(2,3-app)}-Ru{2,3-Medpp}_{2}]_{3}^{32+}$	AN Et/Met	550 SH	40000	008 C	600 a	3.9 × 10 · d	649 c	5.1	102
Ru ₉ Os									
[Os{ (2,3-dpp)Ru[(2,3-dpp)- Ru(bpy)ala}a] ²⁰⁺	AN	550	117000	808 c 860 c	65 d	$5 imes 10^{-4} d$			96
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Et/Met						720 с	1.33	96
$[Os{(2,3-dpp)Ru[(2,3-dpp)-$	AN	556	117500	789 c	125 d	$3  imes 10^{-4}  ext{ d}$			96
Ru(DIq)2]2}3]~~~	Et/Met			800 C			722 с	1.71	96
Ru ₄ Os ₆		500	100500						
[Ru{( <b>2,3-dpp</b> )Ru[( <b>2,3-dpp</b> )- Os(bpy)ala}a] ²⁰⁺	AN Et/Met	560	132500				892 c		96 142
Ru ₃ Os ₇	Lamet						002 0		112
$[Os{(2,3-dpp)Ru[(2,3-dpp)-$	AN Et/Mat	563	140500				000 •		96
$\mathbf{Ru}_{13}$	Et/Met						900 C		142
[Ru{( <b>2,3-dpp</b> )Ru(bpy)( <b>2,3-dpp</b> )-	AN	544	133000	800 c	62 d				282
$Ru[(2,3-dpp)Ru(bpy)_2]_2\}_3]^{20+}$	Et/Met						722 c	1.46	282
[Ru{( <b>2,3-dpp</b> )[Ru[( <b>2,3-dpp</b> )-	AN	542	202000	786 c	45 d	$3.0  imes 10^{-4} \ d$			101,102
$Ru\{(2,3-dpp)Ru(bpy)_2\}_2]_2\}_3]^{44+}$	Et/Met						730 с	1.4	101, 102
		B.	Electroche	mical l	Data				
compound	solvent	RE	E Eox,	V [ <i>n</i> ] (s	ite)	Ered, V [n	] (site)		ref(s)
FeRu									
$[(CN)_4Fe(2,3-dpp)Ru(phen)_2]$	$H_2O$	SCE	+0.5	54 [1] (F	e)				260
$[(PPh_3)_2Cu(2,3-dpp)Cu(PPh_3)_2]^{2+}$	CH ₂ Cl ₂	SCE	+1.2	25 i	-1.01	(BL)			261

# Table 9.49 (Continued)

compound	solvent	RE	<i>E</i> _{ox} , V [ <i>n</i> ] (site)	$E_{\rm red}$ , V [ <i>n</i> ] (site)	ref(s)
$\begin{array}{l} \textbf{Ru}_{2} \\ [Cl_{2}(CO)_{2}Ru(\textbf{2,3-dpp})Ru(CO)_{2}Cl_{2}] \\ [(bpy)_{2}Ru(\textbf{2,3-dpp})Ru(bpy)_{2}]^{4+} \end{array}$	AN AN	SCE NHE	+2.00 i [2] +1.57 [1] (Ru),	-0.620 (BL)	262 266
	AN	SCE	+1.76 [1] (Ru) +1.33 [1] (Ru),	-0.71, -1.18, -1.55	268
	AN	SCE	+1.52 [1] (Ru) +1.44 [1] (Ru),	-0.64, -1.13, -1.4	263
	AN	Ag/AgCl	+1.65 [1] (Ru) +1.50 [1] (Ru),		267
	AN	SCE	+1.72 [1] (Ru) +1.38 [1] (Ru), +1.55 [1] (Ru)	-0.67 [1] (BL), $-1.17$ [1] (BL), 1.57 [2] (bar) $-1.80$ [2] (bar)	264
	AN	Ag/AgCl [¶]	+1.55 [1] (Ru) +1.43 [1] (Ru), +1.61 [1] (Ru)	-0.61 [1] (BL), $-1.09$ [1] (BL)	283
	AN	$Fc/Fc^+$	+1.01 [1] (Ru), +0.99 [1] (Ru), +1 16 [1] (Ru)	-1.05 (BL), -1.55 (BL), -1.95 (bpy)	265
	AN	SCE	+1.41 [1] (Ru), +1.61 [1] (Ru)	-0.69 [1] (BL)	284
	DMF	SCE		$-1.19$ [1] (BL), $\approx -1.4$ (bpy), $\approx -1.5$ (bpy), $-1.73$ (bpy), $-1.86$ (bpy)	284
	DMF	Ag/AgCl		-0.60 [1] (BL), -1.04 [1] (BL), -1.37 [1] (bpy), -1.47 [1] (bpy), -1.64, -1.77	267
$[(bpy)_2Ru(\textbf{2,3-dpp})Ru(biq)_2]^{4+}$	AN	SCE	+1.36 [1] (Ru), +1.48 [1] (Ru)	-0.68 [1] (BL), -1.18 [1], -1.57 [2], -1.81 [2]	264
$[(bpy)_2Ru(\pmb{2,3-dpp})Ru(phen)_2]^{4+}$	DMF AN	SCE SCE	+1.41 [1] (Ru), +1.61 [1] (Ru)	-0.75 (biq), -0.93 (biq), -1.10 (BL) -0.6 i, -1.15 i, -1.4 i	269 263
$[(biq)_2 Ru(\mathbf{2,3-dpp})Ru(biq)_2]^{4+}$	AN	SCE	+1.57 [2] (Ru)	-0.45 [1] (BL), -0.81 [2] (biq), -0.95 [1] (BL), -1.19 [2] (biq)	264
$[(phen)_2 Ru(\textbf{2,3-dpp})Ru(phen)_2]^{4+}$	DMF AN	SCE SCE	+1.44 [1] (Ru), +1.65 [1] (Ru)	-0.71 (biq), -0.87 (biq), -1.07 (BL) -0.64 [1] (BL), -1.13 (BL), -1.38	269 138
$\begin{array}{l} \textbf{RuRh} \\ [(bpy)_2 Ru(\textbf{2,3-dpp}) RhH_2(PPh_3)_2]^{3+} \end{array}$	AN	SCE	+1.56 i (Rh), +1.70 [1] (Ru)	-0.66 [1] (BL), -1.28, -1.51, -1.73	203
<b>RuRe</b> [(bpy) ₂ Ru( <b>2,3-dpp</b> )Re(CO) ₃ Cl] ²⁺	CH ₂ Cl ₂	SCE	>+1.34 i (Re)	-0.66 (BL), -1.20 (BL)	272
<b>RuOs</b> [(bpy) ₂ Ru( <b>2,3-dpp</b> )Os(bpy) ₂ ] ⁴⁺	AN	Ag/AgCl¶	+1.01 [1] (Os),		273
	DMF	SCE	+1.56 [1] (Ru) +0.90 (Os), >+1.60 (Ru)	-0.73 (BL), -1.13 (BL), -1.45 (bpy), -1.55 (bpy),	274
	DMF	Ag/AgCl¶		-1.73 (bpy), -1.89 (bpy) -0.62 [1] (BL), -1.03 [1] (BL), -1.34 [1] (bpy), -1.41 [1] (bpy), -1.61 [1] (bpy), -1.74 [1] (bpy)	273
<b>RuPt</b> [(bpy) ₂ Ru( <b>2,3-dpp</b> )PtMe ₂ ] ²⁺	acetone	SCE	+0.66 i, +1.12 i,	-0.84, -1.39, -1.31, -1.83	271
[(bpy) ₂ Ru( <b>2,3-dpp</b> )PtCl ₂ ] ²⁺	AN	SCE	+1.63 (Ru) +1.47 i, +1.57 (Ru)	-0.54, -1.11, -1.49	271
$[Cl(CO)_{3}Re(2,3-dpp)Re(CO)_{3}Cl]$	CH ₂ Cl ₂ DMF	SCE SSCE	>+1.4 i (Re)	-0.69 (BL), -0.97 (BL) -0.46 [1] (BL), -1.11 i (Re)	272 221
<b>Os₂</b> [(bpy) ₂ Os( <b>2,3-dpp</b> )Os(bpy) ₂ ] ⁴⁺	AN	SCE	+0.90 [1] (Os),	-0.68 [1] (BL), $-1.10$ [1] (BL), 1 28 [2] (but) 1 62 [2] (but)	275
	AN	Ag/AgCl¶	+1.20 [1] (Os) +0.91 [1] (Os), +1.22 [1] (Os)	-0.68 [1] (BL), $-1.06$ [1] (BL)	276
	DMF	Ag/AgCl¶	1.22 [1] (03)	-0.61 [1] (BL), -1.00 [1] (BL), -1.28 [1] (bpy), -1.38 [1] (bpy).	276
	DMF	SCE	+0.83 [1] (Os), +1.12 [1] (Os)	-1.58 [1] (bpy), -1.76 [1] (bpy) -0.72 (BL), -1.10 (BL), -1.39 (bpy), -1.50 (bpy), -1.69 (bpy), -1.89 (bpy)	274
$Ru_3$ [(bpy)Ru{( <b>2,3-dpp</b> )Ru(bpy) ₂ } ₂ ] ⁶⁺	AN AN	SCE SCE	$\begin{array}{c} +1.48 \ [2] \ (Ru_p)^{\nabla} \\ +1.48 \ [2] \ (Ru_p)^{\nabla} \end{array}$	-0.71 two overlapping waves -0.55 [1] (BL), -0.75 [1] (BL), -1.17 [1] (BL), -1.47 [2]	277 264
[(bpy)Ru{( <b>2,3-dpp</b> )Ru(biq) ₂ } ₂ ] ⁶⁺	AN AN	SCE SCE	$\begin{array}{l} +1.62 \; [2] \; (Ru_p)^{\nabla} \\ +1.60 \; [2] \; (Ru_p)^{\nabla} \end{array}$	(bpy + BL), -1.75 [2] (bpy) -0.63 two overlapping waves -0.47 [2] (BL), -0.87 [2] (biq), -1.17 [2] (BL), -1.50 [1] (bpy), -1.79 [2] (biq)	277 264
<b>Ru</b> ₄ [Ru{( <b>2,3-dpp</b> )Ru(bpy) ₂ } ₃ ] ⁸⁺	AN	SCE	$+1.50 \ [>2.5] \ (Ru_p)^{\nabla}$	$\begin{array}{c} -0.56 \ [1] \ (BL), \ -0.74 \ [1] \ (BL), \\ -0.89 \ [1] \ (BL), \ -1.12 \ [1] \ (BL), \\ -1.24 \ [1] \ (BL), \ -1.37 \ [1] \ (BL), \\ -1.51, \ -1.65 \end{array}$	138

812 Chemical Reviews, 1996, Vol. 96, No. 2

#### Table 9.49 (Continued)

Tuble 0.10 (Continueu)					
compound	solvent	RE	$E_{\text{ox}}$ , V [ <i>n</i> ] (site)	$E_{\rm red}$ , V [ <i>n</i> ] (site)	ref(s)
Ru ₄ [Ru{( <b>2,3-dpp</b> )Ru(bpy) ₂ } ₃ ] ⁸⁺	AN	SCE	+1.50 [3] ( $Ru_p$ ) $^{\nabla}$	-0.56 [1] (BL), -0.63 [1] (BL), -0.70 [1] (BL), -1.20 [1],	264
	AN	SCE	+1.53 [3] (Ru _p ) ^{$∇$}	-1.33 [1], $-1.48$ [1] -0.62 [1] (BL), $-0.77$ [1] (BL), 1.22 [1] (PL)	102
$[Ru{(2,3-dpp)Ru(biq)_2}_3]^{8+}$	AN	SCE	$+1.58$ [3] (Ru _p ) $^{\bigtriangledown}$	-1.23 [1] (BL) -0.6 [3] (BL), $-0.87$ [3] (biq), -1.15 [2] (BL)	264
$[Ru{(2,3-dpp)Ru(phen)_2}_3]^{8+}$	AN	SCE	$+1.43 \ [>2.5] \ (Ru_p)^{\bigtriangledown}$	-0.5 series of broad,	138
$[Ru\{(\textbf{2,3-dpp})Ru(tpy)Cl\}_3]^{5+}$	AN	SCE	+1.06 [>2.5] (Ru _p ) $^{\nabla}$	-0.60 [1] (BL), $-0.72$ [1] (BL), $-0.84$ [1] (BL)	138
$[Ru{(2,3-dpp)Ru(2,3-Medpp)_2}_3]^{14+}$	AN	SCE	+1.82 [1] (Ru _i ) $^{\bigtriangledown}$	-0.79 [6] (2,3-Medpp ⁺ ); $-0.98$ [3] (BL)	102
$[{(bpy)_2Ru(2,3-dpp)}_3Os]^{8+}$	AN	SCE	+1.25 [1] (Os), +1.55 [3] (Ru)	-0.55 [1] (BL), -0.65 [1] (BL), -0.77 [1] (BL)	137
<b>RuRh₃</b> [Ru{( <b>2,3-dpp</b> )Rh(ppy) ₂ } ₃ ] ⁵⁺	CH ₂ Cl ₂	SCE	+1.25 i [~1] (Ru)	-0.48 [1] (BL), $-0.60$ [1] (BL), -0.70 [1] (BL), $-1.19$ [1] (BL), $-1.37$ [1] (BL), $\sim -1.60$	144
<b>RuIr3</b> [Ru{( <b>2,3-dpp</b> )Ir(ppy) ₂ } ₃ ] ⁵⁺	CH ₂ Cl ₂	SCE	+1.40 i [>3] (Ru + Ir)	-0.44 [1] (BL), $-0.55$ [1] (BL), -0.65 [1] (BL), $-1.12$ [1] (BL), $-1.29$ [1] (BL), $\approx -1.53$	144
$\begin{array}{l} \textbf{OsRh_3} \\ [Os\{(\textbf{2,3-dpp})Rh(ppy)_2\}_3]^{5+} \end{array}$	CH ₂ Cl ₂	SCE	+0.75 i [1] (Os), +1.50 i [>1] (Rh)	-0.35 i [1] (BL), -0.54 i [1] (BL), -0.82 i [1] (BL)	144
$\begin{array}{l} \textbf{OsIr_{3}} \\ [Os{(2,3-dpp)Ir(ppy)_{2}}_{3}]^{5+} \end{array}$	CH ₂ Cl ₂	SCE	+1.00 [1] (Os), +1.40 i [3] (Ir)	-0.32 [1] (BL), $-0.49$ [1] (BL), -0.67 [1] (BL), $-1.11$ [1] (BL), $-1.29$ [1] (BL), $\approx -1.44$ , $-1.60$	144
$Ru_6$ [{(bpy) ₂ Ru(2,3-dpp)} ₂ Ru(2,3-dpp)-	AN	SCE	+1.44 [4] (Ru _p ) [▽]	-0.55 overlapping waves	141,279
$Ru{(2,3-dpp)Ru(bpy)_2}_2]^{12+}$ [{(biq) ₂ Ru(2,3-dpp)} ₂ Ru(2,3-dpp)- Ru{(2,3-dpp)Ru(biq)_2}_2]^{12+}	AN	SCE	$\sim$ +1.8 [4] (Ru _p ) $^{\nabla}$		141
$\begin{array}{l} Ru_{2}Os_{4} \\ [\{(bpy)_{2}Os(2,3\text{-}dpp)\}_{2}Ru(2,3\text{-}dpp) \\ Ru\{(2,3\text{-}dpp)Os(bpy)_{2}\}_{2}\}^{12+} \end{array}$	AN	SCE	+1.06 [4] (Os)		141
$\begin{array}{c} {\bf Ru_7} \\ [{\rm Ru}_{\{({\color{red}{2}},{\color{black}{3}}{\textbf{-}d{\bf pp}}){\rm Ru}({\color{black}{by}})({\color{black}{2}},{\color{black}{3}}{\textbf{-}d{\bf pp}}){\rm -} \\ {\rm Ru}({\color{black}{by}})_{2}\}_{3}]^{14+} \end{array}$	AN	SCE	+1.38 [3] (Ru _p ) ^{$abla$}	-0.58 [3] (BL)	280
$Ru_{10}$ [Ru{(2.3-dpp)Ru[(2.3-dpp)-	AN	SCE	+1 43 [6] (Ru_) [∇]		281
$Ru(bpy)_2]_2\}_3]^{20+}$	AN	SCE	$+1.53$ [6] (Ru _p ) ^{$\nabla$}	-0.73 [6] (BL _o ), $-1.22$ [3] (BL _i )	102
$[Ru{(2,3-dpp)Ru[(2,3-dpp)-Ru(biq)_2]_2}_3]^{20+}$	AN	SCE	$+1.62 [6] (Ru_p)^{\vee}$		96
$[Ru{(2,3-dpp)Ru[(2,3-dpp)-Ru(2,3-dpp)_2]_2]_3]^{20+}$	AN	SCE	$\sim$ +1.69 [ $\sim$ 6] adsorption	adsorption	102
[Ru{( <b>2,3-dpp</b> )Ru[( <b>2,3-dpp</b> )- Ru(2,3-Medpp) ₂ ] ₂ } ₃ ] ³²⁺	AN	SCE	+1.83 [3] (Ru _i )∨	-0.75 [12] (2,3-Medpp ⁺ ), -0.95 [3] (BL _i )	102
Ru ₉ Os [Os{(2,3-dpp)Ru[(2,3-dpp)-	AN	SCE	+1.17 [1] (Os), +1.50 [6] (Ru _p ) $^{\bigtriangledown}$		96
Ru(bpy) ₂   ₂ ${}_{3}$   ²⁰⁺ [Os{( <b>2,3-dpp</b> )Ru[( <b>2,3-dpp</b> )- Ru(biq) ₂ ] ₂ ${}_{3}$ ] ²⁰⁺	AN	SCE	+1.24 [1] (Os), +1.59 [6] $(Ru_p)^{\nabla}$		96
$\begin{array}{c} Ru_4Os_6 \\ [Ru_{\{(2,3\text{-}dpp)Ru_1^{-1}(2,3\text{-}dpp)\text{-}\\ Os(bpy)_2]_2\}_3]^{20+} \end{array}$	AN	SCE	+1.00 [6] $(Os_p)^{\nabla}$		96
<b>Ru</b> ₃ <b>Us</b> ₇ [Os{( <b>2</b> , <b>3</b> - <b>dpp</b> )Ru[( <b>2</b> , <b>3</b> - <b>dpp</b> )- Os(bpy) ₂ ] ₂ $\}_3$ ] ²⁰⁺	AN	SCE	+1.05 [6] (Os _p ); +1.39 [1] (Os _c ) $^{\bigtriangledown}$		96
$[Ru{(2,3-dpp)Ru(bpy)(2,3-dpp)-Ru[(2,3-dpp)Ru(bpy)_2]_{3}]^{26+}$	AN	SCE	+1.50 [9] $(Ru_p)^{\nabla}$		282
$[Ru\{(2,3-dpp)[Ru[(2,3-dpp)-Ru\{(2,3-dpp)Ru(bpy)_2\}_2]_2\}_3]^{44+}$	AN	SCE	$+1.52 \ [12] \ (Ru_p)^{\nabla}$	overlapping waves	101,102

[‡] Absorption data in other solvents are given in the original paper. [†] No emission <850 nm. [§] At 90 K. [¶] This electrode is 0.268 V vs NHE. ^{$\nabla$} M_c, M_i, M_p stand for central, intermediate, and peripheral metal, respectively. ^{$\parallel$} BL_i and BL_o stand for inner and outer bridging ligand, respectively.

		2,5-dp	p	$\overset{\mathbb{N}}{\checkmark}$					
		<b>A.</b> 1	Photophysical I	Data					
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\mathrm{RT}}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
<b>Ru₂</b> [Cl ₂ (CO) ₂ Ru( <b>2.5-dpp</b> )Ru(CO) ₂ Cl ₂ ]	AN	448	4600						262
$[(h_{DV})_{2}P_{U}(2,5,d_{DD})P_{U}(h_{DV})_{2}]^{4+}$	BuCN	584	19000	noar IP			539 u	80	262
[(bpy)2ru( <b>2,3-app</b> )ru(bpy)2]	AN	585	15900	824 c	155 a		771	0.04	264
[(bpy) ₂ Ru( <b>2,5-dpp</b> )Ru(biq) ₂ ] ⁴⁺	Et/Met AN	595	13700	830 c	190 a		7/1 c	0.94	264 264
$[(\mathrm{biq})_2\mathrm{Ru}(2,5 ext{-}\mathbf{dpp})\mathrm{Ru}(\mathrm{biq})_2]^{4+}$	AN	609	11500	820 c	170 a		792 0	1.00	264 264
Rufe	Et/Met						722 C	1.82	264
$[(bpy)_2Ru(2,5-dpp)Os(bpy)_2]^{4+}$	AN	601	19200				000 f		142
$[(1,, .), \mathbf{D}_{-1}(0, \mathbf{f}_{-1},, 0) - (1,, 1)]$	Et/Met	000	17000				968 c [§]		142
$[(\mathbf{D}\mathbf{p}\mathbf{y})_2\mathbf{K}\mathbf{u}(\mathbf{z},3\cdot\mathbf{d}\mathbf{p}\mathbf{p})\mathbf{O}\mathbf{s}(\mathbf{D}\mathbf{q})_2]^{+1}$	AN Et/Met	620	17900				900 c [§]		142 142
Os ₂	Lamet						000 0		112
[(bpy) ₂ Os( <b>2,5-dpp</b> )Os(bpy) ₂ ] ⁴⁺	AN Et/Met	616	27000				984 c [§]		275 142
Ru ₃									
$[(bpy)Ru{(2,5-dpp)Ru(bpy)_2}_2]^{6+}$	AN	592	28100	814 u	64 a				277
	Et/Met			031 C			755 u	0.98	204
	Et/Met						767 c	0.00	264
[(bpy)Ru{( <b>2,5-dpp</b> )Ru(biq) ₂ } ₂ ] ⁶⁺	AN	591	22900	774 u	120 a				277
	AN			805 c	190 d	0.006 d	704	1.00	264
	Et/Met Et/Met	•					734 u 739 c	1.28	277 264
RuOs ₂	Edimet						100 0		201
$[(bpy)Ru{(2,5-dpp)Os(bpy)_2}_2]^{6+}$	AN Et/Met	606	33800				980 с [§]		142 142
RuOs ₃									
$[Ru{(2,5-dpp)Os(bpy)_2}_3]^{8+}$	AN Et/Met	618	24600				960 c§		142 142
Ru ₆	LUNICU						500 C-		146
[{(bpy) ₂ Ru( <b>2,5-dpp</b> )} ₂ Ru( <b>2,5-dpp</b> )- Ru{( <b>2,5-dpp</b> )Ru(bpy) ₂ } ₂ ] ¹²⁺	AN Et/Met	582	52000	810 u	40 a		756 u	0.83	279 279
		<b>B.</b> E	Electrochemical	Data					
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>n</i> ] (site)		L	E _{red} , V [ <i>n</i> ] (	site)		ref(s)
Ru ₂									
$[Cl_{2}(CO)_{2}Ru(2,5-dpp)Ru(CO)_{2}Cl_{2}]$ [(bpy)_{2}Ru(2,5-dpp)Ru(bpy)_{2}] ⁴⁺	AN S AN S	SCE +1. SCE +1.	92 i [2] 39 [1] (Ru), ⊦1 58 [1] (Ru)	$-0.380 \\ -0.55$	) (BL) [1] (BL), -	-1.09 [1] (B	L), -1.30 [>	1] (bpy)	262 201
	AN S	SCE +1.	37 [1] (Ru), +1.54 [1] (Ru)	-0.53 -1.8	[1] (BL), - 31 [2] (bpy	-1.08 [1] (B	L), -1.50 [2	] (bpy),	264
[(bpy)2Ru( <b>2,5-dpp</b> )Ru(biq)2] ⁴⁺	AN S	SCE +1.	43 [2] (Ru)	-0.47	[1] (BL), o	verlapping	waves		264
$[(biq)_2 Ru(2,5-dpp)Ru(biq)_2]^{4+}$	AN S	SCE +1.	48 [2] (Ru)	$-0.45 \\ -1.2$	[1] (BL), - 26 [2] (bia	-0.82 [2] (bi )	iq), —0.99 [1	] (BL),	264
Os ₂						, ,			
[(bpy) ₂ Os( <b>2,5-dpp</b> )Os(bpy) ₂ ] ⁴⁺	AN S	SCE +0.	92 [1] (Os), ⊦1.22 [1] (Os)	$-0.56 \\ -1.7$	[1] (BL), - 71 [2] (bpy	-1.00 [1] (B ′)	L), -1.46 [2	] (bpy),	275
				0.00					077
[(bpy)Ru{( <b>2,5-dpp</b> )Ru(bpy) ₂ } ₂ ] ⁶⁺	AN S AN S	SCE $\pm 1$ . SCE $\pm 1$ .	45 [2] $(Ru_p)^{\dagger}$ 45 [2] $(Ru_p)^{\dagger}$	-0.66 -0.48 -1.3	two overla [1] (BL), -	apping wav -0.60 [1] (B	es L), -1.10 [1 (bpy)	] (BL),	277 264
[(bpy)Ru{( <b>2,5-dpp</b> )Ru(bia) ₂ } ₂ ] ⁶⁺	AN S	SCE +1.	60 [2] (Ru _n ) [†]	-0.55	two overla	, 1.52 [1] apping wav	es		277
ex Edit and the EELeen and Advised	AN S	SCE +1.	57 [2] (Rup) [†]	-0.47 -1.5	[2] (BL), - 53 [1] (bpv	-0.89 [2] (b)	iq), —1.21 [2   (bia)	] (BL),	264
RuOs ₃					· · · PJ	,,	с х  . <b>Р</b>		
[Ru{( <b>2,5-dpp</b> )Os(bpy) ₂ } ₃ ] ⁸⁺	AN S	SCE +	0.92, +1.10, +1.3	7 -0.64,	-0.80, -0	0.92, -1.22	, -1.38		285
$[{(bpy)_2Ru(2,5-dpp)}_2Ru(2,5-dpp)-Ru{(2,5-dpp)}_Ru{(2,5-dpp)}]^{12+}$	AN S	SCE +1.	38 [3] (Ru _p ) [†]	-0.50	overlappi	ng waves			141,279

 $^{\$}$  At 90 K.  †  Ru  $_{p}$  stands for peripheral Ru.

# 2,3-dpp and 2,5-dpp

Balzani	et	al.	
---------	----	-----	--

		,		I. I.					
		A. Ph	otophysical Da	ta					
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\mathrm{RT}}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₄									
[(bpy) ₂ Ru( <b>2,5-dpp</b> )Ru{( <b>2,3-dpp</b> )-	AN	552	41700	812 u	44 a				139
$Ru(bpy)_2\}_2]^{8+}$	Et/Met						752 u	0.90	139
Ru ₆									
$\{(bpy)_2Ru(2,3-dpp)\}_2Ru(2,5-dpp)-$	AN	540	62200	768 u	55 a				279
$Ru{(2,3-dpp)Ru(bpy)_2}_2]^{12+}$	Et/Met						716 u	1.30	279
$\{(bpy)_2Ru(2,5-dpp)\}_2Ru(2,3-dpp)-$	AN	577	54100	812 u	44 a				279
$Ru{(2,5-dpp)Ru(bpy)_2}_2]^{12+}$	Et/Met						764 u	0.83	279
$\{(bpy)_2Ru(2,5-dpp)\}_2Ru(2,3-dpp)-$	AN	588	39000	790 u	41 a				141
$Ru\{(2,3-dpp)Ru(biq)_2\}_2\}^{12+}$	Et/Met						750 u	1.27	141
Ru ₄ Os ₂									
$\{(bpy)_2Ru(2,5-dpp)\}_2Ru(2,3-dpp)-$	AN	576	50300	802 u	39 a				141
$Ru{(2,3-dpp)Os(bpy)_2}_2]^{12+}$	Et/Met						752 u	0.82	141
		B. Eleo	ctrochemical D	ata					
compound	solvent	RE	<i>E</i> _{ox} , V [	<i>n</i> ] (site)		$E_{\rm red}$	, V [ <i>n</i> ] (site)	)	ref(s)
Rus									
$[{(bpy)_2Ru(2,3-dpp)}_2Ru(2,5-dpp)-$	AN	SCE	+1.41 [4] (Ru _n ) [†]	t		-0.50 ov	erlapping v	vaves	141,279
$Ru{(2,3-dpp)Ru(bpy)_2}_2]^{12+}$			LIX P				11 0		
$[{(bpy)_2Ru(2,5-dpp)}_2Ru(2,3-dpp)-$	AN	SCE	+1.36 [4] (Ru _p )	t		-0.50 ov	erlapping v	vaves	141,279
$Ru{(2,5-dpp)Ru(bpy)_2}_2]^{12+}$			1						
$[\{(bpy)_2Ru(2,5-dpp)\}_2Ru(2,3-dpp)-$	AN	SCE	+1.50 [2] (Ru-b	py),					141
$\operatorname{Ku}_{\{(\boldsymbol{\lambda},\boldsymbol{\beta}-\boldsymbol{\alpha}\boldsymbol{p}\boldsymbol{p}),\operatorname{Ku}(\mathrm{Diq})_{2}\}_{2}}^{2}$			⊤1.00 [2] (Kl	1-DIQ)					
$\mathbf{Ku}_{4} \cup \mathbf{S}_{2}$ $[((h_{1})_{1})_{2} \cup \mathbf{D}_{2}(9 + \mathbf{J}_{2})_{2} \cup \mathbf{D}_{2}(9 + \mathbf{J}_{2})_{2})$	AN	SCE	105[9](0-)	1 45 [9] 4	<b>D</b> •• )†				1.4.1
$Ru\{(2,3-app)\}_{2}Ru(2,3-app)\}_{2}Ru(2,3-app)$ - Ru $\{(2,3-app)Os(bpy)_{2}\}_{2}\}_{2}$	AIN	SUE	+1.05 [2] (US), 1	+1.43 [2] (	κu _p )'				141

 $^{\dagger}\,Ru_{p}$  stands for peripheral Ru.

## Table 9.52

BPTZ

			А.	Photophysical	Data							
compound	solv	ent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em (nn	RT 1)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)	
<b>Ru₂</b> [(bpy) ₂ Ru( <b>BPTZ</b> )Ru(bpy) ₂ ] ⁴⁺	AN DM	[ 1F	685 683	16600 12100	near	IR					201 286	
	B. Electrochemical Data											
compound	solvent	RE		<i>E</i> _{ox} , V [ <i>n</i> ] (site)				Ered, V [4	n] (site)		ref(s)	
<b>Ru₂</b> [(bpy) ₂ Ru( <b>BPTZ</b> )Ru(bpy) ₂ ] ⁴⁺	AN DMF	SCE SCE	+1.52   +1.58	[1] (Ru), +2.02 [1 1] (Ru), +2.10 [1	] (Ru) ] (Ru)	-0.03 0.00,	[1] (BL -0.92,	), −1.25 i −1.52, −	(BL), -1.55 1.78	[>1] (bpy)	201 286	

### Table 9.53

### dpq, R = H $Me_2dpq, R = CH_3$ $Cl_2dpq, R = Cl$ R



			1 5						
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm}^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Cu ₂									
[(PPh ₃ ) ₂ Cu( <b>dpq</b> )Cu(PPh ₃ ) ₂ ] ²⁺	$\mathrm{CH}_2\mathrm{Cl}_2^{\ddagger}$	476	3815	708 u					261
	Et/Met						710 u		261
[(PPh ₃ ) ₂ Cu( <b>Me₂dpq</b> )Cu(PPh ₃ ) ₂ ] ²⁺	$\mathrm{CH}_2\mathrm{Cl}_2^\ddagger$	477	4550	692 u					261
	Et/Met						686 u		261
[(PPh ₃ ) ₂ Cu( <b>Cl₂dpq</b> )Cu(PPh ₃ ) ₂ ] ²⁺	$CH_2Cl_2^{\ddagger}$	482	2900	726 u					261
	Et/Met						720 u		261
Ru ₂									
[(bpy) ₂ Ru( <b>dpq</b> )Ru(bpy) ₂ ] ⁴⁺	AN	605	9800						115
	AN	603	18200	822 u	<20 a				263

### Table 9.53 (Continued)

compound	solven	abs t (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\text{RT}}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ( $\mu\mathbf{s}$ )	ref(s)
Ru ₂									
[(bpy) ₂ Ru( <b>dpg</b> )Ru(phen) ₂ ] ⁴⁺	AN	603	25400	820 u	<20 a				263
[(phen) ₂ Ru( <b>dpg</b> )Ru(phen) ₂ ] ⁴⁺	AN	601	22000	810 u	20 a				263
$[(bpv)_2Ru(Me_2dpa)Ru(bpv)_2]^{4+}$	AN	593	≈20000 f	808 u					283
$[(bpv)_2Ru(Cl_2dpa)Ru(bpv)_2]^{4+}$	AN	635	≈22000 f	860 u					283
RuRe									
$[(bpv)_2Ru(dpa)Re(CO)_3Cl]^{2+}$	CH ₂ Cl	580	8820	†					272
Re ₂				I					
[C](CO) ₃ Re( <b>dpa</b> )Re(CO) ₃ C]]	CH ₂ Cl	528	4860	†					272
ReOs				I					
$[Cl(CO)_3Re(dpq)Os(bpy)_2]^{2+}$	CH ₂ Cl ₂	2 596	12120	†					272
		B. I	Electrochemical	Data					
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>1</i>	ı] (site)		Erec	, V [ <i>n</i> ] (site	)	ref(s
Cu ₂									
$[(PPh_2)_2Cu(dna)Cu(PPh_2)_2]^{2+}$	CH ₂ Cl ₂	SCE	+1.32 i		-0.0	37 (BL)			261
$[(PPh_2)_2Cu(\mathbf{Me_sdpq})Cu(PPh_2)_2]^2+$	CH ₂ Cl ₂	SCE	+1.51 i		-0.8	82 (BL)			261
$[(PPh_3)_2Cu(Cl_2dpq)Cu(PPh_3)_2]^2+$	CH ₂ Cl ₂	SCE	+1.63 i		-0.5	53 (BL)	-1.43 (BL)		261
Ru ₉	0112012	501	11001		011	, (22),	1110 (22)		201
$[(bpv)_{2}Ru(dpa)Ru(bpv)_{2}]^{4+}$	AN	SSCE	+1.47 [1] (Ru).	$\pm 1.62$ [1] (F	2u) -0.5	37 [0.96] (	BL)1.10	[1] (BL)	115
	AN	SCE	+1.48 [1] (Ru)	$\pm 1.64$ [1] (F	$R_{11} = 0.4$	40 - 1.09	-1.4	[1] (22)	263
	AN	SCE	+1.10 [1] (Ru)	+1.68[1] (F	(u) = 0	37 [1] (BI	) -1 15 [1]	(BI.)	284
	111	DOL	1.00 [1] (Ru);	1.00 [1] (1	(u) 0.0	-1.4[1]	(bpv) $\approx -1.5$	5 [1] (bpv)	~0.
					_	1.70 [1] (	bpv)1.82	[1] (bpv)	,
	AN	Ag/AgCl§	+1.52 [1] (Ru).	+1.67 [1] (F	Ru) −0.3	32 [1] (BL	(-1.10[1])	(BL)	283
[(bpy) ₂ Ru( <b>dpa</b> )Ru(phen) ₂ ] ⁴⁺	AN	SČE	+1.51 [1] (Ru).	+1.69 [1] (F	$rac{1}{2}$ $rac{$	361.08	-1.41	()	263
$[(bpv)_2Ru(Me_2dpa)Ru(bpv)_2]^{4+}$	AN	Ag/AgCl [§]	+1.48 [1] (Ru)	+1.65 [1] (F	2u) −0.4	41 [1] (BL	-1.15[1]	(BL)	283
$[(bpv)_2 Ru(Cl_2 dpa) Ru(bpv)_2]^{4+}$	AN	Ag/AgCl [§]	+1.53 [1] (Ru).	+1.72[1]	$rac{1}{2}$ $rac{$	20 [1] (BL	00.89[1]	(BL)	283
RuRe				[-] (-			,,[-]	()	
[(bpv) ₂ Ru( <b>dpa</b> )Re(CO) ₂ C]] ²⁺	CH ₂ Cl ₂	SCE	>+1.36 i (Re)		-0.5	30 (BL)	-0.91 (BL)		272
<b>Re</b> ₉	2116016		1.001 (1.00)		0.0	(),			214
[C](CO) ₃ Re( <b>dpa</b> )Re(CO) ₃ C]]	CH ₂ Cl ₂	SCE	>+1.30 i (Re)		-0.5	33 (BL)	-1.13 (BL)		272
ReOs	2116016		1.001 (1.00)		0.0	(),			~~~
$[Cl(CO)_3Re(dpq)Os(bpy)_2]^{2+}$	$CH_2Cl_2$	SCE	+1.17 (Os)		-0.3	30 (BL), -	-0.88 (BL)		272
[‡] Absorption data in other solver	te ara di	on in the	original paper †	No omissio	a (đ	10-4) bo	low 850 nm	• § Thic (	lactro

is +0.268 V vs NHE.

### Table 9.54



				$\sim$					
		A. Pho	otophysical Da	ita					
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\begin{array}{l} \textbf{Cu}_{2} \\ [(PPh_{3})_{2}Cu(\textbf{dpbq})Cu(PPh_{3})_{2}]^{2+} \end{array}$	CH₂Cl₂ [‡] Et/Met	538 sh	4285	770 u			740 u		261 261
		B. Elec	trochemical D	ata					
compound	solven	ıt F	RE E _{ox} ,	V [ <i>n</i> ] (site)		$E_{ m red}$ , V	' [ <i>n</i> ] (site)		ref(s)
$\begin{array}{c} \textbf{Cu}_2 \\ [(PPh_3)_2Cu(\textbf{dpbq})Cu(PPh_3)_2]^{2+} \end{array}$	CH ₂ C	l ₂ S	CE -	+1.65 i	_	-0.52 (BL	.), -1.31 (BL)	)	261
[‡] Absorption data in other solven	ts are given	in the orig	ginal paper.						

dpq-dpq $A Photophysical Data$										
		А.	Photophysica	l Data						
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)	
<b>Ru₂</b> [(bpy)₂Ru( <b>dpq·dpq</b> )Ru(bpy)₂] ⁴⁺	AN	528	16300	pprox780 u, f	≤60	$6 imes 10^{-6}$			287	

816 Chemical Reviews, 1996, Vol. 96, No. 2

Balzani et al.

# Table 9.55 (Continued)

B. Electrochemical Data									
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>n</i> ] (site)	$E_{\rm red}$ , V [ <i>n</i> ] (site)	ref(s)				
$\frac{\mathbf{Ru}_2}{[(bpy)_2 \mathbf{Ru}(\mathbf{dpq} \cdot \mathbf{dpq}) \mathbf{Ru}(bpy)_2]^{4+}}$	AN	SSCE	+1.42 [2] (Ru)	-0.67 [1] (BL), -0.80 [1] (BL), -1.41 (bpy)	287				

### Table 9.56

ppz N											
A. Photophysical Data											
compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{c} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
<b>Ru₂</b> [(bpy) ₂ Ru( <b>ppz</b> )Ru(bpy) ₂ ] ⁴⁺	H ₂ O	573	16000	820 u	≤50 d	0.0157 a			268		
		E	8. Electrochen	nical Data							
compound	solvent	RE	E _{ox} , V	V [ <i>n</i> ] (site)		$E_{\mathrm{red}}$ ,	V [ <i>n</i> ] (site)		ref(s)		
Ru ₂ [(bpy) ₂ Ru( <b>ppz</b> )Ru(bpy) ₂ ] ⁴⁺	AN	SCE	+1.35 [1] (R	u), +1.55 [	1] (Ru)	-0.67 [1], -	1.34 [1], -1.	.57 [1]	268		

HAT

A. Photophysical Data abs Em_{RT} (nm) Em_{77K} (nm)  $\tau_{\rm RT}$  (ns) τ_{77K} (μs)  $(M^{-1} \stackrel{\epsilon}{c} m^{-1})$ compound solvent (nm)  $\Phi_{RT}$ ref(s) Ru₂ [(bpy)₂Ru(HAT)Ru(bpy)₂]⁴⁺ >800 u 550 a 288 AN Et/Met 727 u 2.7 288 572 15000  $H_2O$ 825 u 148 a 289 572 15000 160 a 288  $H_2O$ >800 u Ru₂ [(bpy)₂Ru(HAT)Ru(HAT)₂]⁴⁺ >800 u  $232 a^{\dagger}$ 288 AN  $2.8^{\dagger}$ Et/Met 725 u 288 19000  $H_2O$ 564 >800 u  $54 a^{\dagger}$ 288 [(bpy)₂Ru(HAT)Ru(tap)₂]⁴⁺ AN >800 u 182 a[†] 288 Et/Met  $3.5^{\dagger}$ 288  $H_2O$ 570 18000 >800 u  $57 a^{\dagger}$ 288 [(phen)₂Ru(HAT)Ru(phen)₂]⁴⁺ AN >800 u 830 a 288 Et/Met 738 u 4.2 288 564 20000 >800 u 260 a 288  $H_2O$  $H_2O$ ≈570 f 800 u 260 d 290 Ru₃  $[{(bpy)_2Ru}_2(HAT)Ru(bpy)_2]^{6+}$ 288 AN >800 u 106 a Et/Met 771 u 1.4 288 880 u 580 38000 288,289  $H_2O$ 40 a  $[{(bpy)_2Ru}_2(HAT)Ru(HAT)_2]^{6+}$ AN >800 158 a 288 Et/Met  $2^{\dagger}$ 743 u 288 34000 >800 u  $H_2O$ 576 62 a 288  $[{(bpy)_2Ru}_2(HAT)Ru(tap)_2]^{6+}$ >800 u 288 AN70 a Et/Met 771 u 1.9 288 >800 u 566 32000  $H_2O$ 60 a 288  $[{(phen)_2Ru}_2(HAT)Ru(phen)_2]^{6+}$ AŇ >800 u 193 a 288 Et/Met 771 u 1.7 288  $H_2O$ 576 43000 >800 u 52 a 288 RuRe₂  $[(bpy)_2Ru(\textbf{HAT})\{Re(CO)_3Cl\}_2]^{2+}$ AN 670 204 529 22000 604 Et/Met 204

### Table 9.57 (Continued)

		B. Elec	ctrochemical Data		
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>n</i> ] (site)	$E_{\rm red}$ , V [ $n$ ] (site)	ref(s)
Ru ₂					
$[(bpy)_2Ru(HAT)Ru(bpy)_2]^{4+}$	AN	SCE	+1.53 [1] (Ru), +1.78 [1] (Ru)	-0.49 [1] (BL), -1.06 [1] (BL)§	288,289
$[(bpy)_2Ru(HAT)Ru(HAT)_2]^{4+}$	AN	SCE	+1.68 [1] (Ru-bpy)	-0.37 [1] (BL), -0.77 [1] (BL), -0.95 [1]	288
$[(bpy)_2Ru(HAT)Ru(tap)_2]^{4+}$	AN	SCE	+1.57 [1] (Ru-bpy), +2.18 [1] (Ru-tap)	-0.38 [1] (BL), -0.85 [1] (BL), -1.03 [1]	288
[(phen)2Ru(HAT)Ru(phen)2]4+	AN	SCE	+1.52 [1] (Ru), +1.78 [1] (Ru)	-0.49 [1] (BL), -1.07 [1] (BL)§	288
	AN	SCE		-0.49 [1] (BL), -1.06 [1]	290
	$H_2O (pH = 5.9)$	SCE		-0.64 [1] (BL)	290
Ru ₃	•			· ·	
$[{(bpy)_2Ru}_2(HAT)Ru(bpy)_2]^{6+}$	AN	SCE	+1.61 [1] (Ru), +1.87 [1] (Ru), +2.12 [1] (Ru)	-0.25 [1] (BL), -0.58 [1] (BL), -1.07 [1]	288,289
$[{(bpy)_2Ru}_2(HAT)Ru(tap)_2]^{6+}$	AN	SCE	+1.66 [1] (Ru-bpy), +1.93 [1] (Ru-bpy)	-0.23 [1] (BL), -0.55 [1] (BL), -0.66 [1]	288
$[\{(phen)_2Ru\}_2(\textbf{HAT})Ru(phen)_2]^{6+}$	AN	SCE	+1.61 [1] (Ru), +1.88 [1] (Ru), +2.16 [1] (Ru)	-0.30 [1] (BL), -0.64 [1] (BL), -1.12 [1]	288
RuRe ₂			1 2010 [1] (102)		
$[(bpy)_2Ru(HAT){Re(CO)_3Cl}_2]^{2+}$	AN	SSCE	+1.48 [1] (Ru), +1.74 i (Re)	-0.07 (BL), -0.44 (BL), -0.97 (BL), -1.20 (BL), -1.45, -1.58 i (Re), -1.82	204

 †  The decay is not a pure single exponential.  $^{\$}$  Overlapping waves follow at more negative potential.

### Table 9.58

BiIm ²⁻	$\left[ \sum_{N}^{N} \right]$	$\langle \rangle$
--------------------	-------------------------------	-------------------

			A. Photophysi	cal Data					
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} <i>n</i> (nm) (	77κ μ <b>s</b> )	ref(s)
Ru ₂ [(bpy) ₂ Ru( <b>BiIm</b> )Ru(bpy) ₂ ] ²⁺	AN Et/Met	498	21000	738 с	37 d	$4.7\times 10^{-4}d$	680 u		291 291
		I	B. Electrochem	nical Data	L				
compound	solvent	RE	Eox, V	[ <i>n</i> ] (site)		$E_{\rm red},{ m V}$	[ <i>n</i> ] (site)		ref(s)
$\frac{\mathbf{Ru}_2}{[(bpy)_2 \mathrm{Ru}(\mathbf{BiIm})\mathrm{Ru}(bpy)_2]^{2+}}$	AN	SSCE	+0.75 [1] (Ru)	), +1.09 [1	] (Ru)	-1.54 [>1] (bpy)	), -1.84 [>1] (ł	opy)	291

### Table 9.59



			jj						
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} τ (nm) (	77K U <b>S)</b>	ref(s)
$  \mathbf{Ru}_2 \\ [(bpy)_2 Ru(\mathbf{BiBzIm})Ru(bpy)_2]^{2+} $	AN Et/Met	512	20000	733 с	60 d	$2.0\times 10^{-4}d$	610 u 675 u		291 291
$\begin{array}{l} Ru_{3} \\ [(bpy)Ru\{(BiBzIm)Ru(bpy)_{2}\}_{2}]^{2+} \end{array}$	AN Et/Met	513	23000	734 с	58 d	$2.2\times 10^{-4}d$	675 u		291 291
		<b>B.</b> E	Electrochemic	al Data					
compound	solvent	RE	E _{ox} , V	[ <i>n</i> ] (site)		$E_{ m red}$ , V	[ <i>n</i> ] (site)		ref(s)
$ \begin{array}{l} \textbf{Ru}_2 \\ [(bpy)_2 Ru(\textbf{BiBzIm}) Ru(bpy)_2]^{2+} \end{array} \\ \end{array} $	AN AN	SCE SSCE	+0.74 [1] (Ru	), +1.04 [1	l] (Ru)	—1.49 (bpy), —	1.78 (bpy)		292 291
<b>Ru₃</b> [(bpy)Ru{( <b>BiBzIm</b> )Ru(bpy) ₂ } ₂ ] ²⁺	AN	SSCE	+0.32 [1] (Ru	), +0.96 [2	2] (Ru)	-1.53 [2] (bpy)	), —1.83 [2] (bj	oy)	291



### A. Photophysical Data

compound	solver	abs nt (nm	) $(M^{-1} cm^{-1})$	Em _{RT} ) (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[(bpy) ₂ Ru( <b>bpbimH₂</b> )Ru(bpy) ₂ ] ⁴⁺	AN	459	27000		560 d				293,294
	BuCN	1		629 c			611 c		293,295
	Et/Me	et					611 u	2.77	293
[(bpy) ₂ Ru( <b>bpbimH₂</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	- BuCN	1		678			649		295
[(dmbpy) ₂ Ru( <b>bpbimH</b> ₂ )Ru(dmbpy) ₂ ] ⁴⁺	AN				480 d				293
	Et/Me	et					611 u	2.22	293
[(dmbpy) ₂ Ru( <b>bpbimH₂</b> )Ru(phen) ₂ ] ⁴⁺	AN	458	31300		480 d				293,294
	Et/Me	et					627 u		293
RuRh									
[(bpy) ₂ Ru( <b>bpbimH₂</b> )Rh(bpy) ₂ ] ⁵⁺	AN	pprox460	) f ≈12300 f		<10 d				296
	nitrile	9					603 u		296
[(bpy) ₂ Ru( <b>bpbimH</b> )Rh(bpy) ₂ ] ⁴⁺	AN			≈657 f					294
	nitrile	e					606 u		296
[(dmbpy) ₂ Ru( <b>bpbimH₂</b> )Rh(phen) ₂ ] ⁵⁺	nitrile	9					614 u		296
[(bpy) ₂ Ru( <b>dmbpbim</b> )Rh(bpy) ₂ ] ⁵⁺	nitrile	9					609 u		296
		B. Elec	trochemical D	ata					
			E VI			E	V [] (	+ - <b>)</b>	
compound	solvent	RE	$E_{\text{ox}}, V$	<i>n</i> ] (site)		$E_{\rm rec}$	$\mathbf{h}, \mathbf{v} [n]$ (S1)	te)	rei(s)
Ru ₂									
[(bpy) ₂ Ru( <b>bpbimH₂</b> )Ru(bpy) ₂ ] ⁴⁺	AN	Fc/Fc ⁺	+0.777 (Ru)		-1.78	80 i [1] (	BL), -1.87	75 [1] (bp	oy), 293
					-2	.145 [1]	(bpy)		
	AN	Ag/AgCl	+0.94 [2] (Ru)						297
	AN/H ₂ O	Ag/AgCl	+0.94 [1] (Ru),	+0.98 [1] (R	u)				298
[(dmbpy) ₂ Ru( <b>bpbimH₂</b> )Ru(dmbpy) ₂ ] ⁴⁺	AN	Fc/Fc ⁺	+0.680 (Ru)						293
[(dmbpy) ₂ Ru( <b>bpbimH₂</b> )Ru(phen) ₂ ] ⁴⁺	AN/H ₂ O	Ag/AgCl	+0.86 [1] (Ru-o	lmbpy),					298

D.	DI.
KI	ıкп

AN/H ₂ O AN AN/H ₂ O	Ag/AgCl Fc/Fc ⁺ Ag/AgCl	+0.94 [1] (Ru), +0.98 [1] (Ru) +0.680 (Ru) +0.86 [1] (Ru-dmbpy), +0.97 [1] (Ru-phen)		298 293 298
AN	Fc/Fc ⁺	+0.774 [1] (Ru)	-1.147 [1] (Rh)	296
AN	Fc/Fc ⁺	+0.680 [1] (Ru)	irreproducible	296
AN	Fc/Fc ⁺	+0.683 [1] (Ru)	-1.127 [1] (Rh)	296
AN	Fc/Fc ⁺	+0.756 [1] (Ru)	-1.200 [1] (Rh)	296
	AN/H2O AN AN/H2O AN AN AN AN	$\begin{array}{cccc} AN/H_2O & Ag/AgCl \\ AN & Fc/Fc^+ \\ AN/H_2O & Ag/AgCl \\ \end{array}$ $\begin{array}{cccc} AN & Fc/Fc^+ \\ AN & Fc/Fc^+ \\ AN & Fc/Fc^+ \\ AN & Fc/Fc^+ \\ AN & Fc/Fc^+ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$



A. Photophysical Data

compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\text{RT}}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
[(bpy) ₂ Ru( <b>dpimbH</b> ₂ )Ru(bpy) ₂ ] ⁴⁺	AN	461	24900	680 u	606				265
	Et/Met						637 u	$2.70^{\dagger}$	299
[(bpy) ₂ Ru( <b>dpimbH</b> )Ru(bpy) ₂ ] ³⁺	AN				<35 d				299
	Et/Met						651 u	0.101 [§]	299
[(bpy) ₂ Ru( <b>dpimb</b> )Ru(bpy) ₂ ] ²⁺	Et/Met						678 u		299
[(bpy) ₂ Ru( <b>bptb</b> )Ru(bpy) ₂ ] ⁴⁺	AN	516	14300	746 u	115				265
RuRh									
[(bpy) ₂ Ru( <b>dpimbH₂</b> )Rh(bpy) ₂ ] ⁵⁺	AN	pprox460 f	f $\approx 12200$		<10 d				296
	nitrile						632 u		296
$[(bpy)_2Ru(dpimbH)Rh(bpy)_2]^{4+}$	nitrile						633 u		296
		<b>B.</b> E	lectrochemical	Data					
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>n</i>	] (site)		$E_{\rm re}$	_d , V [ <i>n</i> ] (sit	e)	ref(s)
Ru ₂									
$[(bpy)_2 Ru(dpimbH_2) Ru(bpy)_2]^{4+}$	AN	Fc/Fc ⁺	+0.750 [1] (Ru),	+0.830 [1] (	(Ru)				299
	AN	Fc/Fc ⁺	· ·		-	-1.79 i, -1	.88 (bpy), -	-2.17 (bpy)	265
[(bpy) ₂ Ru( <b>bptb</b> )Ru(bpy) ₂ ] ⁴⁺	AN	Fc/Fc ⁺	+0.96 [1] (Ru), +	1.00 [1] (Rı	u) -	-1.13 [1] (E	BL), -1.42	[1] (BL),	265
						-1.90 [2]	(bpy)		
RuRh									
$[(bpy)_2Ru(dpimbH_2)Rh(bpy)_2]^{5+}$	AN	Fc/Fc ⁺	+0.798 [1] (Ru)		-	-1.186 [1] (	(Rh)		296
[(bpy) ₂ Ru( <b>dpimbH</b> )Rh(bpy) ₂ ] ⁴⁺	AN	Fc/Fc ⁺			-	-1.333 [1] (	(Rh)		296
[†] At 90 K. [§] At 171 K.									

	bbbpy	H ₂											
A. Photophysical Data													
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm}^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)				
$\frac{\mathbf{Ru}_2}{[(bpy)_2 \mathbf{Ru}(\mathbf{bbbpyH}_2)\mathbf{Ru}(bpy)_2]^{4+}}$	AN	498		719	202				294				
	B. Electrochemical Data												
compound	solvent	RI	$E E_{ox}, V$	[ <i>n</i> ] (site)		E _{red} , V	[ <i>n</i> ] (site)		ref(s)				
<b>Ru₂</b> [(bpy) ₂ Ru( <b>bbbpyH</b> ₂ )Ru(bpy) ₂ ] ⁴⁺	AN/H ₂ O	Fc/F	Fc ⁺ +0.80	[2] (Ru)	-1.3	2 [1], -1.	81 [1], -2.1	3 [1]	294				

### Table 9.63



compound	solvent	abs (nm)	$(M^{-1} \overset{\epsilon}{c} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
$[(bpy)_2Ru(pbim-S_1-pbim)Ru(bpy)_2]^{4+}$	BuCN						628 c		295
[(bpy) ₂ Ru( <b>pbim-S₁-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN			667 c			632 c		295
[(bpy) ₂ Ru ^{III} ( <b>pbim-S₁-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁵⁺	BuCN				0.0077				300
[(bpy) ₂ Ru( <b>pbim-S₂-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN			667 c			643 c		295
[(bpy) ₂ Ru ^{III} ( <b>pbim-S₂-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁵⁺	BuCN				0.120				300
[(bpy) ₂ Ru( <b>pbim-S₃-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN			674 c			646 c		295
[(bpy) ₂ Ru( <b>pbim-S₄-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN			674 c			645 c		295
[(bpy) ₂ Ru( <b>pbim-S₅-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	AN				500				300
	BuCN			678 c			651 c		295
[(bpy) ₂ Ru ^{III} ( <b>pbim-S₅-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁵⁺	BuCN				$0.550^{\dagger}$				300
[(bpy) ₂ Ru( <b>pbim-S₆-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN						650 c		295
[(bpy) ₂ Ru( <b>pbim-S₁₀-pbim</b> )Ru(4DCE-bpy) ₂ ] ⁴⁺	BuCN			678 c			651 c		295
RuRh									
[(bpy) ₂ Ru( <b>pbim-S₂-pbim</b> )Rh(bpy) ₂ ] ⁵⁺	AN	pprox458 f	≈14800 f		<10 d				296
	nitrile						609 u		296
[(bpy) ₂ Ru( <b>pbim-S₂-pbim</b> )Rh(phen) ₂ ] ⁵⁺	nitrile						610 u		296
	B. El	lectrochei	nical Data						
compound so	lvent	RE	Eox, V [n] (site)	)	E _{red} , V	/ [ <i>n</i> ] (si	te)		ref(s)
Ru ₂									
$[(bpy)_2 Ru(pbim-S_2-pbim)Ru(bpy)_2]^{4+} A$	N	Fc/Fc ⁺	+0.830 (Ru)	-1	l.714 [1] (bpy –2.180 [1] (b	(-1.9)	18 [1] (bpg	7),	293
В	uCN	Fc/Fc ⁺	+0.793 (Ru)			FJ			293
<b>RuRh</b> [(bpv) ₂ Ru( <b>phim-S₂-phim</b> )Rh(bpv) ₂ ] ⁵⁺ A	N	Fc/Fc ⁺	+0.825 [1] (Ru	) -1	1.175 [1] (Rh)				296
$[(bpy)_2Ru(pbim-S_2-pbim)Rh(pbin)_2]^{5+}$	N	Fc/Fc ⁺	+0.820 [1] (Ru	) —1	1.177 [1] (Rh)				296

Table 9.64

† At 213 K.



A. Photophysical Data										
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)	
$\label{eq:relation} \begin{array}{l} \textbf{Ru}_2 \\ [(bpy)_2 \text{Ru}(\textbf{pbim-S}_{B}\text{-}\textbf{pbim}) \text{Ru}(4\text{DCE-bpy})_2]^{4+} \end{array}$	BuCN			667 c			641 c		295	

mpzt	$\langle N \rangle $ $N \rangle$ $N$
A Dha	tonhucical Data

A. Photophysical Data													
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ <b>s</b> )	ref(s)				
$\mathbf{Ru}_2$ [(bpy) ₂ Ru( <b>mpzt</b> )Ru(bpy) ₂ Cl] ³⁺	AN EtOH MeOH	530	19000	no emission			705 u		301 301 301				
		В.	Electrochemic	al Data									
compound	solvent		RE E _{ox} ,	V [ <i>n</i> ] (site)	$E_{\rm r}$	red, V [ <i>n</i> ]	(site)		ref(s)				
Ru ₂ [(bpy) ₂ Ru( <b>mpzt</b> )Ru(bpy) ₂ Cl] ³⁺	AN		SCE +0.	92, +1.41	-0.97, -	-1.51, -	1.57, -1.76	3	01,302				

### Table 9.66



		A.	Photophysi	cal Data					
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
$[(bpy)_2Ru(a-bpt-b)Ru(bpy)_2]^{3+}$	AN nitrile	453	18500	648 с	100 d		608 c	3.6	303 303
	nitrile			648 c	100 d 56 a	$2.1  imes 10^{-3}$ a	608 c	3.6	304
[(bpy) ₂ Ru( <b>a-bpt-b</b> )Ru(phen) ₂ ] ³⁺	AN EtOH	440	23400	640	66 d		606		305 305
[(phen) ₂ Ru( <b>a-bpt-b</b> )Ru(bpy) ₂ ] ³⁺	AN EtOH	450	20400	636	51 d		603		305 305
Ru ₂									
[(phen) ₂ Ru( <b>a-bpt-b</b> )Ru(phen) ₂ ] ³⁺	AN EtOH	421	35500	627	33 d		597		305 305
[(bpy) ₂ Ru( <b>a-mbpt-b</b> )Ru(bpy) ₂ ] ³⁺	AN EtOH	456	20200	655 u	65 a				306 306
	nitrile						610 u	3.8	306
RuRh [(bpy) ₂ Ru( <b>a-bpt-b</b> )Rh(ppy) ₂ ] ²⁺	EtOH Et/Mot	455	10000	636	130 d		601	4.6	307 307
RuOs	LUNIEL			030	150 u		001	4.0	307
[(bpy) ₂ Ru( <b>a-bpt-b</b> )Os(bpy) ₂ ] ³⁺	AN nitrile	458	23000	751 с	30 d		726 с	0.67	303 303
[(bpy) ₂ Ru( <b>b-bpt-a</b> )Os(bpy) ₂ ] ³⁺	AN nitrile	452	22000	758 с	28 d		730 с	0.59	303 303
RuIr									
[(bpy) ₂ Ru( <b>a-bpt-b</b> )Ir(ppy) ₂ ] ²⁺	EtOH Et/Met	465	12000	635	130 d		600	4.7	307 307
Rh ₂									
[(ppy) ₂ Rh( <b>a-bpt-b</b> )Rh(ppy) ₂ ] ⁺	EtOH Et/Met	375	9000	no emission			458	160	307 307
$Os_2$		000 1		~~ .	00.1				
[(bpy) ₂ Os( <b>a-bpt-b</b> )Os(bpy) ₂ ] ³⁺	AN	600 sh	10000	754 C	33 d				303
	AIN nitrilo	475	18000	702 u	35 U		749 c	0.34	300
	nitrile						765 u [†]	0.34	308
Ir ₂							u	0.01	000
[(ppy) ₂ Ir( <b>a-bpt-b</b> )Ir(ppy) ₂ ] ⁺	EtOH Et/Met	420	1000	484	70 d		473	4.8	307 307
		<b>B.</b> ]	Electrochem	ical Data					
compound	solven	t RE	$E_{\mathrm{ox}}$ ,	V [ <i>n</i> ] (site)		<i>E</i> _{red} , V [ <i>n</i>	] (site)		ref(s)
R119									
[(bpy) ₂ Ru( <b>a-bpt-b</b> )Ru(bpy) ₂ ] ³⁺	AN	SCE	+1.04 [1]	(Ru), +1.34 [1	] -1	.40 [2] (bpy), -1 -1.67 [1], -2.22	l.62 [1] (b 2 [1], −2.3	py), 3 i [1]	307
[(bpy)2Ru( <b>a-bpt-b</b> )Ru(phen)2] ³⁺	AN	SCE	+1.07 [1]	, +1.38 [1]	-1	.35 [1], -1.71 [1	l] .		305
[(phen) ₂ Ru( <b>a-bpt-b</b> )Ru(bpy) ₂ ] ³⁺	AN	SCE	+1.06 [1]	, +1.37 [1]	-1	.33, -1.71			305
$[(phen)_2 Ru(\mathbf{a}-\mathbf{bpt}-\mathbf{b})Ru(phen)_2]^{3+}$	AN	SCE	+1.04 [1]	, +1.34 [1]	-1	.48, -1.71			305
[(bpy) ₂ Ru( <b>a-mbpt-b</b> )Ru(bpy) ₂ ] ³⁺	AN	SCE	+1.04 [1]	, +1.34 [1]	-1	.37 [1] (bpy), —1 -1.62 [1] (bpy)	l.42 [1] (b	ру),	306

## Table 9.66 (Continued)

compound	solvent	RE	$E_{\text{ox}}$ , V [ <i>n</i> ] (site)	$E_{\rm red}$ , V [ <i>n</i> ] (site)	ref(s)
$\label{eq:relation} \begin{array}{l} \textbf{RuRh} \\ [(bpy)_2 Ru(\textbf{a-bpt-b}) Rh(ppy)_2]^{2+} \end{array}$	AN	SCE	+1.03 [1] (Ru), +1.39 [2]	-1.42 [1] (bpy), -1.65 [1] (bpy), -2.03 [1] (BL), -2.26 [1] (ppy), -2.49 i [1] (ppy)	307
<b>RuOs</b> $[(bpy)_2Ru(a-bpt-b)Os(bpy)_2]^{3+}$ $[(bpy)_2Ru(b-bpt-a)Os(bpy)_2]^{3+}$	AN AN	SCE SCE	+0.73 [1] (Os), +1.20 [1] (Ru) +0.65 [1] (Os), +1.30 [1] (Ru)	-1.33 [1] (bpy), -1.41 [1] (bpy) -1.36 [2] (bpy)	309 309
$[(bpy)_2Ru(a-bpt-b)Ir(ppy)_2]^{2+}$	AN	SCE	+1.05 [1] (Ru), +1.35 [1] (Ir)	-1.42 [1] (bpy), -1.66 [1] (bpy), -1.98 [1] (BL), -2.27 i [1] (ppy)	307
$\label{eq:results} \begin{array}{l} \mathbf{Rh_2} \\ [(ppy)_2 \mathbf{Rh}(\mathbf{a}\text{-}\mathbf{b}\mathbf{p}\mathbf{t}\text{-}\mathbf{b})\mathbf{Rh}(ppy)_2]^+ \end{array}$	AN	SCE	+1.36 i [1], +1.83 i [1]	-1.92 [1] (BL), -2.12 i [1] (ppy), -2.29 i [1] (ppy), -2.48 i [1] (ppy)	307
$\begin{array}{l} \textbf{Os_2} \\ [(bpy)_2Os(\textbf{a-bpt-b})Os(bpy)_2]^{3+} \end{array}$	AN	SCE	+0.64 [1], +0.85 [1]	-1.34 [2] (bpy), -1.58 [1] (bpy), -1.68 [1]	308
$Ir_{2} [(ppy)_{2}Ir(a-bpt-b)Ir(ppy)_{2}]^{+}$	AN	SCE	+1.13 i [1], +1.30 i [1]	-1.80 [1] (BL), -2.12 i (ppy), -2.29 i [1] (ppy), -2.44 i [1] (ppy)	307
' Af 90 K.					

### Table 9.67

# 2,3-dpp and a-bpt-b⁻

	A	Phot	ophys	sical Data						
compound	solver	at (1	abs 1m)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$\label{eq:relation} \begin{array}{l} \mathbf{Ru_4} \\ [(bpy)_2 \mathrm{Ru}(\mathbf{a}\text{-}\mathbf{bpt}\text{-}\mathbf{b})\mathrm{Ru}\{(2,3\text{-}\mathbf{dpp})\mathrm{Ru}(bpy)_2\}_2]^{7+1} \end{array}$	AN Et/Mo <b>B.</b> 1	et Electu	535 r <b>oche</b> i	mical Data	800 c	68 d	$1  imes 10^{-3}  d$	600 с 720 с	4.0 1.6	310 310
compound	solvent RE $E_{ox}$ , V [ $n$ ] (site) $E_{red}$ , V [ $n$ ] (site)					ite)		ref(s)		
$ \begin{array}{l} \textbf{Ru_4} \\ [(bpy)_2 Ru(\textbf{a-bpt-b}) Ru\{(\textbf{2,3-dpp}) Ru(bpy)_2\}_2]^{7+} \end{array} \end{array} $	AN	SCE	+1.0	9 [1], +1.55 [2	2] -0.6	4 [1], -	0.89 [1], -1.49	9 [≈4], −1	.75 [≈4	] 310

### Table 9.68



compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
$ \begin{array}{c} \mathbf{Ru}_{2} \\ [(bpy)_2 \mathrm{Ru}(\mathbf{bpt}\textbf{-}\mathbf{A10}_{\mathbf{D}}\textbf{-}\mathbf{bpt}) \mathrm{Ru}(bpy)_2]^{4+} \end{array} $	AN Et/Met	446	25000	638 u	110 a		585 u	4.37	311 311
$\label{eq:response} \begin{array}{l} \textbf{RuOs} \\ [(bpy)_2 \textbf{Ru}(\textbf{bpt}\textbf{-A10}_{D}\textbf{-bpt}) \textbf{Os}(bpy)_2]^{4+} \end{array}$	AN	450	22000	620 u 724 u	56 a 34 a†				312
0	Et/Met						580 u 715 u	4.85 0.90	312
$[(bpy)_2Os(bpt-A10_D-bpt)Os(bpy)_2]^{4+}$	AN Et/Met	477	15600	725 u	42 a		716 u	0.95	311 311
		B. Elec	ctrochemical D	ata					
compound	solvent	RE	<i>E</i> _{ox} , V [ <i>1</i>	ı] (site)		$E_{\rm red}$ ,	V [ <i>n</i> ] (site)	)	ref(s)
<b>Ru₂</b> [(bpy) ₂ Ru( <b>bpt-A10_D-bpt</b> )Ru(bpy) ₂ ] ⁴⁺ <b>RuOs</b>	AN	SCE	+1.33 [2] (Ru)		-1.	30 [2] (b _]	py), –1.54	[2] (bpy)	311
$[(bpy)_2Ru(bpt-A10_D-bpt)Os(bpy)_2]^{4+}$ Os ₂	AN	SCE	+0.79 [1] (Os),	+1.30 [1] (R	u) —1.	33 [2] (b _]	ру), —1.51	[2] (bpy)	312
$[(bpy)_2Os(bpt-A10_D-bpt)Os(bpy)_2]^{4+}$	AN	SCE	+0.84 [2] (Os)		-1.	27 [2] (bj	ру), -1.58	[2] (bpy)	311
[†] A longer-lived component is also pr	esent, but	with int	ensity too low t	to measure	lifetime.				



		A	. Photophysica	al Data					
compound	solvent	abs (nm)	$M^{-1} \stackrel{\epsilon}{cm^{-1}}$ )	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\mathrm{RT}}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
<b>Ru₂</b> [(bpy) ₂ Ru( <b>bpzt</b> )Ru(bpy) ₂ ] ³⁺	AN AN EtOH Et/Met nitrile	449	26500	670 u 671 u	106 a 200 d		617 u 610 u	7.03 5.0	306 313 306 313 306
		В.	Electrochemi	cal Data					
compound	solvent	RE	$E_{\rm ox},{\rm V}[n]$	(site)		$E_{\rm red}$ , V	[ <i>n</i> ] (site)		ref(s)
$\frac{\mathbf{Ru}_2}{[(bpy)_2 \mathbf{Ru}(\mathbf{bpzt})\mathbf{Ru}(bpy)_2]^{3+}}$	AN	SCE	+1.16 [1], -	+1.46 [1]	-1.26 [	1] (BL), –	1.39, -1.55,	-1.63	306

### Table 9.70



A. Photophysical Data

compound	solver	nt	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ <b>s</b> )	ref(s)
Ru ₂										
$[(bpy)_2Ru(bpbtH_2)Ru(bpy)_2]^{4+}$	AN		481	18000	711 с	118 d				314
	$CH_2Cl_2$				660 c	238 d				314
	EtOH				≈700 c	150 d				314
	H ₂ O (pH =	= 9)			686 c	94 d				314
Ru ₃	-									
[{Ru(bpy) ₂ } ₂ ( <b>bpbt</b> )Ru(bpy) ₂ ] ⁴⁺	$CH_2Cl_2$				660 c	346 d				314
	EtOH				≈700 c	140 d				314
	AN		468	27000	711 c	82 d				314
	H ₂ O (pH =	= 0.5)			658 c	125 d				314
	$H_2O(pH =$	= 9)			675 c	93 d				314
		B.	Electro	ochemical Da	ita					
compound	solvent	RE		<i>E</i> _{ox} , V [ <i>n</i> ] (sit	e)		$E_{ m red}$ , V	[ <i>n</i> ] (site)		ref(s)
Ru ₂										
$[(bpy)_2Ru(bpbtH_2)Ru(bpy)_2]^{4+}$ Ru ₂	DMF	SCE	+0.85	[1], +1.01 [1]		-1.42	[2] (bpy	), -1.67 [2]	(bpy)	314
$[{Ru(bpy)_2}_2(bpbt)Ru(bpy)_2]^{4+}$	DMF	SCE	+1.00	[1], +1.23 [1],	+1.41 [1]	-1.35	[3] (bpy	), -1.63 [3]	(bpy)	314

Table 9.71



compound	solvent	abs (nm)	$(\mathrm{M}^{-1}\overset{\epsilon}{\mathrm{cm}^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₃									
[{(bpy) ₂ Ru} ₂ ( <b>tpb</b> )Ru(bpy) ₂ ] ³⁺	AN			683 u					301
	EtOH	475	27100						301
	MeOH						632 u		301
[{(bpy) ₂ Ru} ₂ ( <b>tpbH₃</b> )Ru(bpy) ₂ ] ⁶⁺	AN			620 u					301
	EtOH	441	32300						301
	MeOH						604 u		301

Polynuclear Transition Metal Complexes

## Table 9.71 (Continued)

	]	B. Electroc	hemical Data		
compound	solvent	RE	$E_{\text{ox}}$ , V [ $n$ ] (site)	$E_{\rm red}$ , V [ <i>n</i> ] (site)	ref(s)
$\begin{array}{l} Ru_{3} \\ [\{(bpy)_{2}Ru\}_{2}(tpb)Ru(bpy)_{2}]^{3+} \\ [\{(bpy)_{2}Ru\}_{2}(tpbH_{3})Ru(bpy)_{2}]^{6+} \end{array}$	AN AN	SCE SCE	+0.86 +1.18	-1.47 (bpy), -1.66, -1.82	301,302 301,302

Table 9.72



## A. Photophysical Data

compound	solve	nt	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ <b>s</b> )	ref(s)
Ru ₃										
[{(bpy) ₂ Ru} ₂ ( <b>tpzb</b> )Ru(bpy) ₂ ] ³⁺	AN				677 u					301
	EtOF	ł	460							301
	MeO	H						650 u		301
[{(bpy) ₂ Ru} ₂ ( <b>tpzbH</b> ₃ )Ru(bpy) ₂ ] ⁶⁺	AN				675 u					301
	EtOF	ł	445							301
_	MeO	H						645 u		301
Ru ₆										
$[{(bpy)_2Ru}_3(tpzb){Ru(bpy)_2Cl}_3]^{6+}$	AN	_			775 u					301
	EtOF	1	515	67200				005		301
	MeO	H			200			685 u		301
$[{(bpy)_2Ru}_3(tpzbH_3){Ru(bpy)_2Cl}_3]^{3+}$	AN	T	500	05000	769 u					301
	EtOF	1	530	65000				005		301
	MeO	н						695 U		301
		<b>B.</b> E	Electroc	hemical Data	a					
compound	solvent	RE		<i>E</i> _{ox} , V [ <i>n</i> ]	(site)		E	, _{red} , V [ <i>n</i> ] (si	te)	ref(s)
Ru ₃										
[{(bpy) ₂ Ru} ₂ ( <b>tpzb</b> )Ru(bpy) ₂ ] ³⁺	AN	SCE	+1.05				adsorpti	ion		301
$[{Ru(bpy)_2}_3(tpzb){Ru(bpy)_2Cl}_3]^{6+}$	AN	SCE	+0.94	(Ru(bpy) ₂ Cl),	+1.16 (Ru(	bpy)2)	-1.14 [1	] (BL), -1.	50 (bpy),	301
$[\{Ru(bpy)_2\}_3(\textbf{tpzbH_3})\{Ru(bpy)_2Cl\}_3]^{9+}$	AN	SCE	+0.97	(Ru(bpy) ₂ Cl),	+1.35 (Ru(	bpy)2)	adsorpti	ion		301



Α.	Photon	hysical	Data
л.	I notop	mysicai	ναια

			1 5						
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
<b>FeRu₂</b> [{(bpy) ₂ Ru( <b>bpy-E4_C-tpy</b> )} ₂ Fe] ⁶⁺	acetone	589	41900	620					207



A. Photophysical Data											
compound	sol	vent	abs (nm)	$(M^{-1} \overset{\epsilon}{c})$	n−1)	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
<b>Ru₂</b> [(tpy)Ru( <b>tpp</b> )Ru(tpy)] ⁴⁺	A	N	650			826 u	100 a				260
[(tpy)Ru( <b>tpp</b> )IrCl ₃ ] ²⁺	A	N	pprox660	≈240	0 f	810 u	22 d				315
			B	8. Electro	chemi	cal Data	a				
compound	solvent	RE		<i>E</i> _{ox} , V [ <i>I</i>	n] (site)			$E_{\rm red}$ , V	[ <i>n</i> ] (site)		ref(s)
Ru ₂ [(tpy)Ru(tpp)Ru(tpy)] ⁴⁺	AN AN	SCE SSCE	$^{+1.43}_{+1.40}$	5 [1] (Ru), 9 [1] (Ru),	+1.72 [ +1.71 [	1] (Ru) 1] (Ru)	-0.34 -0.39 [1] (1 -1.86 [2	BL), -0.86   ] (BL)	[1] (BL), -1.	43 [2] (tpy),	260 316
[(tpy)Ru( <b>tpp</b> )IrCl ₃ ] ²⁺	AN DMF	Ag/AgCl ^a Ag/AgCl ^a	$\frac{8}{8}$ +1.56	[1] (Ru),	+1.92 [	1] (Ir)	-0.29 [1] (J	BL), -0.83	[1] (BL), -1.	42 [1] (tpy)	315 315

[§] This electrode is +0.268 V vs NHE.

Table 9.75



#### **A. Photophysical Data** abs (nm) Em_{RT} (nm) Em_{77K} (nm) $au_{ m RT}$ (ns) τ_{77K} (μs) $\Phi_{\text{RT}}$ compound solvent $(M^{-1} cm^{-1})$ ref(s) $\mathbf{Ru}_2$ [(tpy)Ru(tpy-A-tpy)Ru(tpy)]4+ ≈620 f 845 c 60 d $5 \, imes \, 10^{-4} \, d$ 317 AN BuCN 775 с 1.6 317 **B. Electrochemical Data** compound solvent RE Eox, V [n] (site) $E_{\text{red}}$ , V [n] (site) ref(s) Ru₂ -0.45 [1] (BL), -1.07 [1] (BL), -1.42 [1], -1.52 [1] (tpy), -1.58 [1] (tpy) [(tpy)Ru(tpy-A-tpy)Ru(tpy)]⁴⁺ AN SCE +1.41 [1] (Ru), +1.58 [1] (Ru) 318

Table 9.76



compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm^{-1}})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
<b>Ru₂</b> [(ttpy)Ru( <b>tpy-tpy</b> )Ru(ttpy)] ⁴⁺	AN Et/Met	≈520 f	≈58000 f				674 с	12.9	319 319
RuRh [(ttpy)Ru( <b>tpy-tpy</b> )Rh(ttpy)] ⁵⁺	AN Et/Met	$\approx$ 516 f	≈30200 f				674 c	12.5	319 319

Polynuclear Transition Metal Complexes

## Table 9.76 (Continued)

compound	solvent	abs (nm)	$(M^{-1} cm^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)		
[(ttpy)Ru( <b>tpy-Ph-tpy</b> )Rh(ttpy)] ⁵⁺	AN	≈497 f	≈35100 f						319		
	Et/Met						636 c	13.0	319		
[(ttpy)Ru( <b>tpy-Ph₂-tpy</b> )Rh(ttpy)] ⁵⁺	AN	pprox493 f	≈39200 f						319		
	Et/Met						629 c	13.2	319		
RuOs											
[(ttpy)Ru( <b>tpy-tpy</b> )Os(ttpy)] ⁴⁺	AN	678	10500						97,320,321		
	BuCN			800 u	110 d	$0.13 imes10^{-2}$ †			97,320,321		
[(ttpy)Ru( <b>tpy-Ph-tpy</b> )Os(ttpy)] ⁴⁺	AN	671	8500						97,320,321		
	BuCN			746 u	190 d	$1.5 imes10^{-2}$ †			97,320,321		
[(ttpy)Ru( <b>tpy-Ph₂-tpy</b> )Os(ttpy)] ⁴⁺	AN	670	7700						97,320,321		
	BuCN			738 u	200 d	$1.3 imes10^{-2}$ †			97,320,321		
B. Electrochemical Data											
compound	solvent	RE	$E_{\rm ox}$ ,	V [ <i>n</i> ] (sit	e)	$E_{\rm rec}$	, V [ <i>n</i> ] (s	ite)	ref(s)		
Ru ₂											
[(ttpy)Ru( <b>tpy-tpy</b> )Ru(ttpy)] ⁴⁺	AN	SCE	+1.31 [2] (F	lu)					319		
RuRh											
[(ttpy)Ru( <b>tpy-tpy</b> )Rh(ttpy)] ⁵⁺	AN	SCE	+1.31 [1] (F	lu)		-0.54 i (Rh)	, -1.22 [	1], -1.44	4 [1] 319		
[(ttpy)Ru(tpy-Ph-tpy)Rh(ttpy)] ⁵⁺	AN	SCE	+1.29[1] (F	lu)		-0.56 i (Rh)	, -1.18 [	1], -1.4	1 [1] 319		
$[(ttpy)Ru(tpy-Ph_2-tpy)Rh(ttpy)]^{5+}$	AN	SCE	+1.27 [1] (F	lu)		-0.56 i (Rh)	1.20 [	$1^{-1.3'}$	7 [1] 319		
RuOs				,		· · ·	· ·				
[(ttpy)Ru( <b>tpy-tpy</b> )Os(ttpy)] ⁴⁺	AN	SCE	+0.94 [1] (0	(s), +1.31	l [1] (Ru)	-0.97 [1] (B	L)		321		
$[(ttpy)Ru(tpy-Ph-tpy)Os(ttpy)]^{4+}$	AN	SCE	+0.94 [1] (C	(s), +1.29	) [1] (Ru)	-1.16 [1] (B	L)		321		
[(ttpy)Ru(tpy-Ph ₂ tpy)Os(ttpy)] ⁴⁺	AN	SCE	+0.94 [1] (0	), +1.28	3 [1] (Ru)	-1.18 [1] (B	L)		321		
[†] Excitation at 650 nm.											

## Table 9.77



			in i notopi	iy bicui i	Julu				
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ( $\mu \mathrm{s}$ )	ref(s)
Ru ₂									
$[(tpy)Ru(tpy-E_1-tpy)Ru(tpy)]^{4+}$	AN	515	32800	722	565 d	$1.4 imes10^{-3}\mathrm{d}$			322
$[(tpy)Ru(tpy-E_2-tpy)Ru(tpy)]^{4+}$	AN	512	39300	735	720 d	$2.1 imes10^{-3}~ m d$			322
RuOs									
[(tpy)Ru( <b>tpy-E₁-tpy</b> )Os(tpy)] ⁴⁺	AN			746	0.014 d	$^{<1}  imes 10^{-4}  \mathrm{d}$			323
					225 d	0.016 d			
	EtOH						640	$7.2 imes10^{-4}$	323
							730	2.4	
[(tpy)Ru( <b>tpy-E₂-tpy</b> )Os(tpy)] ⁴⁺	AN			760	0.020 d	$^{<1}  imes 10^{-4} \mathrm{d}$			323
					200 d	0.013 d			
	EtOH						650	$1.07 imes10^{-3}$	323
							745	2.2	

tpy-Ph-E _n -Ph-tpy A	A. Photop	بر hysical I	=C) _n -∕⊂)		
	ahs	6	Ет	TpT	

compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{ m RT}$	Em _{77K} (nm)	$ au_{77\mathrm{K}}$ ( $\mu\mathbf{s}$ )	ref(s)
$\begin{array}{l} \textbf{Ru_2} \\ [(tpy)Ru(tpy\textbf{-Ph-E_1-Ph-tpy})Ru(tpy)]^{4+} \\ [(tpy)Ru(tpy\textbf{-Ph-E_2-Ph-tpy})Ru(tpy)]^{4+} \end{array}$	AN AN	488 490	48500 62000	670 665	3.2 d 5.5 d	${}^{<1}\times 10^{-4}d \\ {}^{<1}\times 10^{-4}d$			322 322



### **Table 9.80**



compound	solven	t abs (n	m) $\epsilon$ (M ⁻¹ cm ⁻¹ )	Em _{RT} (nm)	(ns)	$\Phi_{\text{RT}}$	Em _{77K} (nm)	$\tau_{77\mathrm{K}} \left( \mu \mathbf{s} \right)$	ref(s)
<b>Ru₂</b> [(ttpy)Ru( <b>tpy-ZnP-tpy</b> )Ru(ttpy)] ⁴⁺	AN	≈540	f	650 c	0.240 d				325
B. Electrochemical Data									
compound	solvent	RE	E _{ox} , V	[ <i>n</i> ] (site)			$E_{\rm red}, V[n]$ (s	site)	ref(s)
Ru ₂ [(ttpy)Ru(tpy-ZnP-tpy)Ru(ttpy)] ⁴⁺	AN	SCE +	).66 [1] (porphyrin	), +0.82 [1] (	porphyrin)	-1.24	4 [1] (tpy), -1.	47 [1] (tpy)	325

### Table 9.81

$(dpb-dpb)^{-2}$ , n = 0	N=
$(dpb-Ph-dpb)^{-2}$ , n = 1	-c"
$(dpb-Ph_2-dpb)^{-2}, n = 2$	



compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Ru ₂									
(ttpy)Ru( <b>dpb-dpb</b> )Ru(ttpy)] ²⁺	AN	547	29350						326
	BuCN			798 u	3.96 d	$3.7 imes10^{-5}~ m d$	762 u	0.44	326
RuOs									
[(ttpy)Ru( <b>dpb-dpb</b> )Os(ttpy)] ²⁺	AN	770	2700						326
	BuCN			816 u	t	$5.4 imes10^{-6}~{ m d}$	834 u	t	326
	BuCN			≈816 u	0.35 d		≈750 u	$7.2 imes10^{-4}$	327
				940 u	t		837 u	0.400	
[(ttpy)Ru( <b>dpb-Ph-dpb</b> )Os(ttpy)] ²⁺	AN	770	2900						327
	BuCN			800 u	3.5 d		750 u	0.042	327
				920 u	t		837 u	0.370	
[(ttpy)Ru( <b>dpb-Ph₂-dpb</b> )Os(ttpy)] ²⁺	AN	770	3000						327
	BuCN			792 u	4.9 d		750 u	0.178	327
				916 u	†		840 u	§	

## Table 9.81 (Continued)

compound	solvent	abs (nm)	$(\mathrm{M}^{-1} \mathrm{cr}$	$Em_F$ $n^{-1}$ ) (nm	$\tau_{\rm RT}$ $\tau_{\rm RT}$	¢	₽ _{RT}	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)
Os ₂ [(ttpy)Os( <b>dpb-dpb</b> )Os(ttpy)] ²⁺	AN BuCN	770	4500	) 820	u [†]	2.4 ×	∶ 10 ^{−6} d	t	t	326 326
B. Electrochemical Data										
compound	sol	vent	RE	E _{ox} , V	7 [ <i>n</i> ] (site)		$E_{\rm red}$ , V	[ <i>n</i> ] (site)	r	ef(s)
Ru ₂ [(ttpy)Ru( <b>dpb-dpb</b> )Ru(ttpy)] ²⁺ RuOs	А	N	SCE	+0.34 [1] (Rı	ı), +0.50	[1] (Ru)	-1.55	[1] (ttpy)	326,3	328,329
[(ttpy)Ru( <b>dpb-dpb</b> )Os(ttpy)] ²⁺	А	N	SCE	+0.29 [1] (Os	s), +0.51 [	1] (Ru)	-1.48	(ttpy)	326	
[(ttpy)Ru( <b>dpb-Ph-dpb</b> )Os(ttpy)] ²	+ A	N	SCE	+0.33 [1] (Os	s), +0.53 [	1] (Ru)	-1.50	i (ttpy)	327	
[(ttpy)Ru( <b>dpb-Ph₂-dpb</b> )Os(ttpy)]	²⁺ A	N	SCE	+0.33 [1] (Os	s), +0.52 [	1] (Ru)	-1.50	i (ttpy)	327	
Os ₂ [(ttpy)Os( <b>dpb-dpb</b> )Os(ttpy)] ²⁺	А	N	SCE	+0.22 [1] (Os	s), +0.34 [	1] (Os)	-1.53	(ttpy)	326,3	328
[†] Too weak to be measured. § Hid	den by th	e tail of	the Ru-ba	ased emissio	n.					

### **Table 9.82**

# dppm P(Ph)₂-CH₂-P(Ph)₂

A. Photophysical Data									
compound	solvent	abs (nm)	$(M^{-1} \stackrel{\epsilon}{cm} ^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μ <b>s</b> )	ref(s)
Pd ₂ [(CNN)Pd( <b>dppm</b> )Pd(CNN)] ²⁺	AN BuCN	457	4800	608 u	≤1.0 a		≈545 u	0.0022	190 190
		В.	Electrochemic	al Data					
compound	SO	lvent	RE	$E_{\rm ox}$ , V	[ <i>n</i> ] (site)	$E_{1}$	red, V [ <i>n</i> ] (site	e)	ref(s)
Pd ₂ [(CNN)Pd( <b>dppm</b> )Pd(CNN)] ²⁺	CI	H ₂ Cl ₂	SCE	+1	.20 i		−1.30 i		190



A. I hotophysical Data										
compound	solvent	abs (nm)	$(M^{-1} e^{\epsilon} m^{-1})$	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\rm RT}$	Em _{77K} (nm)	τ _{77K} (μs)	ref(s)	
NiOs										
[(dppb)Ni( <b>tppb</b> )Os(bpy) ₂ ] ⁴⁺	AN	${\approx}470~{\rm f}$		610	9 d	0.002 d			330	
[(dppb)Pd( <b>tppb</b> )Os(bpy) ₂ ] ⁴⁺	AN	pprox470 f		605	12 d	0.002 d			330	
Os ₂										
[(bpy) ₂ Os( <b>tppb</b> )Os(bpy) ₂ ] ⁴⁺	AN	pprox470 f		603	400 d	0.063 d			330	
OsPt										
$[(bpy)_2Os(tppb)Pt(dppb)]^{4+}$	AN	pprox470 f		603	251 d	0.044 d			330	
B. Electrochemical Data										
compound	solvent	RE	$E_{\text{ox}}$ , V $[n]$ (site)		i	E _{red} , V [ <i>n</i> ] (si	te)		ref(s)	
NiOs										
[(dppb)Ni( <b>tppb</b> )Os(bpy) ₂ ] ⁴⁺	AN	SCE	+1.36 [1] (Os)	-0.1	8 [1] (Ni),	-0.45 [1] (N	i), -1.30 [1]	] (bpy)	330	
PdOs										
[(dppb)Pd( <b>tppb</b> )Os(bpy) ₂ ] ⁴⁺	AN	SCE	+1.37 [1] (Os)	-0.6	0 [2] (Pd),	-1.31 [1] (b)	oy)		330	
Os ₂			· ·		· ·	· •				
$[(bpy)_2Os(tppb)Os(bpy)_2]^{4+}$	AN	SCE	+1.43 [2] (Os)	-1.2	7 [1] (bpy)				330	
OsPt					• 10,					
[(bpy) ₂ Os( <b>tppb</b> )Pt(dppb)] ⁴⁺	AN	SCE	+1.37 [1] (Os)	-0.7	6 [2] (Pt),	—1.30 [1] (bp	y)		330	

## $S(C_2H_5)_2$

			A. Pł	notophy	sical l	Data					
compo	und	solvent	abs (nm)	(M ⁻¹	∈ cm ^{−1} )	Em _{RT} (nm)	$ au_{ m RT}$ (ns)	$\Phi_{\mathrm{RT}}$	Em _{77K} (nm)	τ _{77K} (μ <b>s</b> )	ref(s)
Pt ₂ [(bph)Pt{ <b>S(C</b> ₂ ]	H5)2}2Pt(bph)]	CH2Cl2 CH2Cl2/EtOH	340 2300		000	497 c	10500	0.0077	490 c	12.2	331 331
			B. Ele	ctroche	mical	Data					
com	pound	solvent		RE		<i>E</i> _{ox} , V [ <i>n</i> ]	(site)	$E_{ m red}$ , V	[ <i>n</i> ] (site)		ref(s)
Pt ₂ [(bph)Pt{ <b>S(</b>	C2H5)2}2Pt(bph)]	CH ₂ Cl ₂		SSCE		+1.35 i [1	] (Pt)				331
10. Abbreviatio	ons				dabj	py	4,4′	-diamino-2	,2'-bipyric	line	
А5 _в -(bру) ₃	1,3,5-tris[[[(2, benzylami	,2′-bipyridyl-5-yl nolmethyllbenze	)carbon	nyl]-		DyH2 E F bov	4,4 1,2-	-dicarboxy- dichloroeth	2,2 -bipyr iane	ndine	nuridino
A5 _B -(5CE-bpy) ₃	1,3,5-tris[[[[5 pyridy]-5'	6-(ethoxycarbon yl]carbonyl]ben	yl)-2,2' zylamii	-bi- no]-	4DC DCC	)-bpy Э-bpy	4,4 4,4' d	-bis(ethoxy -bis(isoproj ine	oxycarbo	-2,2 -DI nyl)-2,2	2'-bipyri-
A5 _C -(bpy) ₃	1,3,5-tris[4-[] yl)benzyla zene	[(2,2'-bipyridyl-5 mino]methyl]pl	i-ylcarb nenyl]b	oon- oen-	deal dien dmb	ppy pbim	4,4 diet 1,1 b	-bis(diethy hylenetria -dimethyl ibenzimida	lamino)-2; mine -2,2'-bis(2 zole	,2'-bipy 2-pyrid	ridine lyl)-6,6′-
a-bpt-b ⁻	deprotonated triazole	3,5-bis(pyridin-	2-yl)-1,	2,4-	dmb 5,5′-	py dmbpy database E(	4,4′ 5,5′	-dimethyl-2 -dimethyl-2	2,2′-bipyri 2,2′-bipyri	idine idine	
bbbpyH ₂	2,2'-bis(2-be dine	nzimidazolyl)-4	,4'-bip	yri-	5,5 - 5, DM	ambpy-E6 5'-dmbpy F	- see dim	ethylforma	umide		
4-benzyl-py BiBzIm ²⁻ BiIm ²⁻ bia	4-benzylpyric deprotonated deprotonated 2 2' biguinali	line   2,2'-bibenzimid   2,2'-biimidazole   20	lazole e		dmp DM (dpb	bhen SO 9-dpb) ^{2–}	4,7- dim dep	dimethylpl ethyl sulfo rotonated	nenanthro xide 3,3′,5,5′	oline -tetrap	yridylbi-
bpbimH ₂ bpbtH ₂ bph	2,2'-biquinon 2,2'-bis(2-pyr 5,5'-bis(2-pyr biphenyl dia	idyl)bibenzimida idyl)-3,3'-bi(1,2, nion	azole 4-triaz	ole)	(dpb dpb dpir	)-Ph _n -dpb) 4 2	p ^{2–} see 2,3- 2 6	nenyi Table 9.81 bis(2'-pyric bis(2' pyric	lyl)benzo[ lyl)bonzdi	[g]quin	oxaline
bpy 4,4'-bpy	2,2'-bipyridin 4,4'-bipyridin				dpor dpor 2,3-0	dpp	2,6- dipy 2,3-	vrido(2,3- <i>a</i> : bis(2-pyrid	2′,3′- <i>h</i> )ph yl)pyrazii	enazin ne	e
bpy-a-bpy bpy-aa-bpy bpy-A5 _A -bpy	see Table 9.2 see Table 9.2 1,10-bis[[[(2,2 benzylami	o 7 ′-bipyridinyl-5-yl	)carbon	nyl]-	2,5- dppl dpp	dpp b e m	2,5- 1,2- 1,2- bis(	2,5-bis(2-pyridyl)pyrazine 1,2-bis(diphenylphosphino)benz 1,2-bis(diphenylphosphino)- <i>cis</i> -e bis(diphenylphosphino)mathane			zene ethene
bpy-bpy-bpy bpy-E4 _C bpy-E4 _C -tpy	see Table 9.3 deprotonated see Table 9.7	0 4-ethynyl-2,2'- '3	bipyrid	line	dpq dpq	-dpq	2,3- 2,2' li	2,3-bis(2'-pyridyl)quinoxaline 2,2',3,3'-tetra-2-pyridyl-6,6'-b line			
bpy-E5 _A -bpy bpy-E5 _B -bpy	1,4-bis[2-(2,2 bicyclo[2.2, 1,4-bis[2-(2,2	?'-bipyridin-5-y] .2.]octane ?'-bipyridin-5-y]	l)ethen l)ethyn	yl]- yl]-	dpte1,2-bis(dipherDPT ⁻ deprotonateddtol-phen2,9-di-p-tolyl-			bis(diphen rotonated di- <i>p</i> -tolyl-1	nylthio)ethane   1,3-diphenyltriazene -1,10-phenanthroline		
bpy _a -bpy _b bpym	bicyclo[2.2. 2,2':3',2":6",2 2,2'-bipyrimi	2.joctane 2'''-quaterpyridir dine	ne		Et/N EtO FAF	/let H	etha etha 2,6-	anol/metha anol bis(4,5-dia	nol zafluoren	-9-ylid	ene)ada-
bpt-A10 _D -bpt bptb	see Table 9.6 2,6-bis(2-pyr <i>d</i> ]benzothi	8 idyl)-2,2′:6,2″-th azole	iazolo[⁄	4,5-	Fc hace	od-bpy ₆	n ferr 1,4,	nantane ocene 7,10,13,16-	hexakis[(	2,2′-bip	yridin-6-
BPTZ bpzt [_]	3,6-bis(2-pyri deprotonated triazole	dyl)tetrazine 3,5-bis(pyrazin-	2-yl)-1,	2,4-	HAT	[	y cl 1.4.	l)methyl]-1 looctodecar 5.8.9.12-he	,4,7,10,13 e xaazatrip	3,16-he	xaazacy- ne
bsd btd BTMFbpy	2,1,3-benzose 2,1,3-benzoth 4,4'-bis(triflu	elenadiazole niadiazole oromethyl)-2,2'-	bipyrid	line	HM kno m-n	PA t-k-nn n	hex see see	amethylph Table 9.45 Table 9.44	osphoram	ide	
BuCN bzq cage-phen₃	butyronitrile benzo[ <i>h</i> ]quin see Table 9.4	oline 7			mbp Mea	otH -4 4'-bpv	3-(6 1 3 3'	-methylpyr ,2,4-triazol -dimethyl-/	idin-2-yl)- e 1 4'-binyri	5-(pyrie	din-2-yl)-
caten Cl ₂ dpq	see Table 9.4 6,7-dichloro-	6 2,3-bis(2-pyridy	l)quino	oxa-	4Me	bpy-bd4- by4Me	1,4- 1	bis(4-methy ,3-diene	/l-2,2'-bipy	ridin-4	'-yl)buta-
CNN	C-deprotonat hydrazone	ed 2-acetylpyridi	ine phe	nyl-	4Me bj	ebpy-ch4- oy4Me	1,4- cy e	bis(4-meth yclohexene thyl ester	y1-2,2'-bij -5,6-dicar	pyridin boxylic	-4´-yl)-2- acid di-
Cp cyclam cyclo-phen	cyclopentadie 1,4,8,11-tetra see ref 257	enyl anion azacyclotetrade	cane		4Me bլ	ebpy-E4 _A - by4Me	trai e	<i>1s</i> -1,2-bis(4' thene	-methyl-2	,2′-bipy	rid-4-yl)-

Polynuclear Transition Metal Complexes

Mahner E4	1.4  bis[9.(4)  mothed 9.9)  binsmid (4.4)  sthe
4Mebpy-E4B-	1,4-DIS[2-(4-metriyi-2,2-Dipyrid-4-yi)etrie-
Dpy4Me	Ityljbenzene 1.4. big(4. mathal 9. 9' binamidin 4' al)ban
4Mebpy-P4 ₀ -	1,4-DIS(4-methyl-2,2 -Dipyridin-4 -yl)den-
bpy4Me	zene
4Mebpy-P4 _n -	see Table 9.22
bpy4Me	
4Mebpy-S4 ₂ -Cp	see Table 9.16
4Mebpy-S4 _A -	see Table 9.18
bpy4Me	
4Mebpy-S4 _B -	see Table 9.18
bpy4Me	
4Mebpy-S4 _C -	see Table 9.18
bpy4Me	
4Mebpy-S4 _D -	1,12-bis(4-methyl-2,2'-bipyrid-4'-yl)-2,-
bpy4Me	11-diazadodecane
4Mebpy-S4 _E -	1,11-bis(4-methyl-2,2'-bipyrid-4'-yl)-6-
bpy4Me	methyl-2,6,10-triazaundecane
4Mebpy-S4 _n -	see Table 9.17
bpy4Me	
6Mebpy-S6 ₂ -	1,2-bis(6'-methyl-2,2'-bipyridin-6-yl)-
bpy6Me	ethane
2.3-Medpp ⁺	2-[2-(1-methylpyridiniumyl)]-3-(2-pyr-
· · · · · · · · · · · · · · · · · · ·	idyl)pyrazine
Me ₂ dpa	6.7-dimethyl-2.3-bis(2-pyridyl)quinoxa-
~~r~1	line
Methny	4 4' 5 5'-tetramethyl-2 2'-bipyridine
1-MeIm	1-methylimidazole
(MeO) - bnv	4 4'-dimethoxy-2 2'-binyridine
MeOH	methanol
2 9 Mas-nhan	2 9-dimethyl-1 10-phen-anthroline
2,5-Meg-phen	2 A 7 8 totromothyl 1 10 phononthro
wie4phen	lino
Monhon S2	1 2 his (0 mothyl 1 10 phononthrolin 2
nhon0Mo	vi)ethane
4 Manue	yijetilalle
4-Mepy	4-methylpyriame 2 methyltetrobudgefuren
	2-methylletranyuroituran
mppy	3-methyl-2-phenylpyridine
mpzt	1-metnyi-3-(pyrazin-z-yi)-1,z,4-triazoie
N-DPY ₃	see Table 9.37
NHE	normal hydrogen electrode
nitrile	propionitrile/butyronitrile
NMF	N-methylformamide
PAP	see Table 9.48
pbim-S _B -pbim	see Table 9.64
pbim-S _n -pbim	see Table 9.63
pbpy-Ph-E _n -Ph-	see Table 9.39
pbpy	
PBu ⁿ ₃	tri- <i>n</i> -butylphosphine
PC	propylene carbonate
phen	1,10-phenanthroline
PPh ₃	triphenylphosphine
рру	2-phenylpyridine anion
ppz	4',7'-phenanthrolino-5',6':5,6-pyrazine
ptpy	2-( <i>p</i> -tolyl)pyridine
PTZ	phenothiazine
PTZ-py	10-(4-picolyl)phenothiazine
ру	pyridine
py-crown-py	see Table 9.11
py-E4 _A -py	<i>trans</i> -1,2-bis(4-pyridyl)ethylene
ру-Е4 _в -ру	1,4-bis(4-pyridyl-2-ethyl)benzene
py-NN-py	4,4'-azobispyridine
py-S4 _n -py	see Table 9.7
pyz	pyrazine
QP	2,2':6',2'':6'',2'''-quaterpyridine
$QP_B$	2,2':4',4":2",2"'-quaterpyridine
SCE	saturated calomel electrode
SSCE	sodium saturated calomel electrode
tap	1,4,5,8-tetraazaphenanthrene
TĤF	tetrahydrofuran
tpbH ₃	1,3,5-tris[5-(pyridin-2-yl)-1,2,4-triazol-3-
-	yl]benzene
tpp	2,3,5,6-tetrakis(2'-pyridyl)pyrazine
	· · · · ·

Chemical Reviews, 1996, Vol. 96, No. 2 829

1,2,4,5-tetrakis(diphenylphosphino)ben-

	zene
tpzbH ₃	1,3,5-tris[5-(pyrazin-2-yl)-1,2,4-triazol-3-
•	yl]benzene
tpy	2,2',2''-terpyridine
tpy-E _n -tpy	see Table 9.77
tpy-Ph _n -tpy	see Table 9.76
tpy-Ph-bco-Ph-	see Table 9.79
tpy	
tpy-Ph-E _n -Ph-	see Table 9.78
tpy	
tpy-ZnP-tpy	[5,15-bis[4-(4'-phenyl-2,2':6',2"-terpyr-
	idyl)phenyl]-3,7,13,17-tetraethyl-2,8,-
	12,18-tetramethylporphyrin]zinc(II)
tpy-tpy	see Table 9.76
tpy-A-tpy	see Table 9.75
ttpy	4'-(p-tolyl)-2,2',6',2''-terpyridine
ZnTPyP	meso-[5,10,15,20-tetrakis(pyridyl)porphy-
	rin]zinc(II)

#### Acknowledgments

tppb

This work has been supported by the Ministero della Università e della Ricerca Scientifica e Tecnologica and by the Consiglio Nazionale delle Ricerche (Progetto Strategico Tecnologie Chimiche Innovative).

#### References

- (1) Balzani, V.; Moggi, L.; Scandola, F. In Supramolecular Photochemistry; Balzani, V., Ed.; Reidel: Dordrecht, The Netherlands, 1987; p 1.
- (2) Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem., Int. Ed. Engl. 1988, 27, 113.
   (3) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
   (4) Scandola, F.; Indelli, M. T.; Chiorboli, C.; Bignozzi, C. A. Top.
- Curr. Chem. 1990, 158, 73.
- (5) Dürr, H., Bouas-Laurent, E., Eds. Photochromism. Molecules and Systems; Elsevier: Amsterdam, The Netherlands, 1990.
- (6) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304. (7) Balzani, V.; Scandola, F. Supramolecular Photochemistry, Hor-
- wood: Chichester, U.K., 1991.
- (8) Vögtle, F. Supramolecular Chemistry; Wiley: Chichester, U.K., 1991.
- (9) Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, J., Dürr, H., Eds.; VCH: Weinheim, Germany, 1991.
- (10) Balzani, V. Tetrahedron 1992, 48, 10443.
- (11) Beer, P. D. Adv. Inorg. Chem. 1992, 39, 79.
  (12) Balzani, V., De Cola, L., Eds. Supramolecular Chemistry, Kluwer: Dordrecht, The Netherlands, 1992.
  (13) (a) Bissel, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P.
- L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. *Chem. Soc. Rev.* **1992**, *21*, 187. (b) Bissel, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; McCoy, C. P.; Sandanayake, K. R. A. S. *Top. Curr. Chem.* **1993**, *168*, 223. (14) Fabbrizzi, L., Poggi, A., Eds. *Transition Metals in Supramo*
- lecular Chemistry; Kluwer: Dordrecht, The Netherlands, 1994.
- (15) Astruc, D. Electron Transfer and Radical Processes in Transition-Metal Complexes; VCH: New York, 1995.
- (16) (a) Balzani, V.; Credi, A.; Scandola, F. In Transition Metals in Supramolecular Chemistry; Fabbrizzi, L., Poggi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 1994; p 1. (b) Balzani, V.; Scandola, F. In Comprehensive Supramolecular Chemistry, Reinhoudt, D. N., Ed.; Pergamon, in press; Vol. 10.
- (17) Crosby, G. A.; Watts, R. J.; Carstens, D. H. W. Science 1970, 170, 1195.
- (18) Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M. Top. Curr. Chem. 1978, 75, 1.
- (19) De Armond, M. K.; Carlin, C. M. Coord Chem. Rev. 1981, 36, 325.
- 325.
   Meyer, T. J. Pure Appl. Chem. 1986, 58, 1193.
   Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.
   Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: London, U.K., 1992.
   For example, see: Jones, W. E.; Baxter, S. M.; Strouse, G. F.; Meyer, T. J. J. Am. Chem. Soc. 1993, 115, 7363.
   For example, see: Winkler, J. R.; Gray, H. B. Chem. Rev. 1992, 92, 369. Meier, M.; van Eldik, R.; Chang, L.-J.; Mines, G. A.;

- 92, 369. Meier, M.; van Eldik, R.; Chang, I.-J.; Mines, G. A.; Wuttke, D. S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc.

**1994**, *116*, 1577. Moreira, I.; Sun, J.; Cho, O.-K.; Wishart, J. F.; Isied, S. S. *J. Am. Chem. Soc.* **1994**, *116*, 8396.

- (25) For example, see: Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. For example, see: Roundnill, D. M.; Gray, H. B.; Che, C.-M. Acc.
   Chem. Res. 1989, 22, 55. Farid, R. S.; Chang, I.-J.; Winkler, J.
   R.; Gray, H. B. J. Phys. Chem. 1994, 98, 5176. Yam, V. W. W.;
   Yeung, P. K. Y.; Cheung, K. K. J. Chem. Soc., Chem. Commun.
   1995, 267. Nocera, D. G. Acc. Chem. Res. 1995, 28, 209. Chan,
   C.-K.; Guo, C.-X.; Wang, R.-J.; Mak, T. C. W; Che, C.-M. J. Chem.
   Soc., Dalton Trans. 1995, 753. Striplin, D. R.; Crosby, G. A. J.
   Phys. Chem. 1995, 407 077. Phys. Chem. 1995, 99, 7977.
- (26) Balzani, V.; Carassiti, V. Photochemistry of Coordination Compounds; Academic Press: London, U.K., 1970.
- (27) Balzani, V.; Barigelletti, F.; De Cola, L. Top. Curr. Chem. 1990, 158, 31.
- (28) Horváth, O.; Stevenson, K. L. Charge Transfer Photochemistry of Coordination Compounds; VCH: New York, 1993.
- Vogler, A. In Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier: New York, 1988; Part D, p 179.
- (30) Crosby, G. A. Acc. Chem. Res. 1975, 8, 231.
- Demas, J. N.; Harris, E. W.; McBride, R. P. J. Am. Chem. Soc. (31)1977. 99. 3547.
- (32) De Armond, M. K.; Hillis, J. E. J. Phys. Chem. 1971, 54, 2247.
- (33) Hipps, K. W.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7042.
   (34) Crosby, G. A. Adv. Chem. Ser. 1976, 150, 149.
- (35) Vlcek, A. A. Coord. Chem. Rev. 1982, 43, 39.
- (36) Garcia, E.; Kwak, J.; Bard, A. J. Inorg. Chem. 1988, 27, 4377. (37)(a) Dodsworth, E. S.; Vlcek, A. A.; Lever, A. B. P. Inorg. Chem. 1994, 33, 1045. (b) Vlcek, A. A.; Dodsworth, E. S.; Pietro, W. J.;
- Lever, A. B. P. *Inorg. Chem.* **1995**, *34*, 1906. (38) Roffia, S.; Casadei, R.; Paolucci, F.; Paradisi, C.; Bignozzi, C. A.; Scandola, F. J. Electroanal. Chem. 1991, 302, 157
- (39) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.

- (40) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391.
  (41) Creutz, C. Prog. Inorg. Chem. 1980, 30, 1.
  (42) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 59
  (43) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155.
- (44) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441.
- (45) Ulstrup, J. Charge Transfer Processes in Condensed Media; Springer-Verlag: Berlin, Germany, 1979.
- Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. (46)
- (47) Wasielewski, M. R. Chem. Rev. 1992, 92, 435.
- (48) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111.
  (49) (a) Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. In Photoprocesses in Transition Metal Complexes, Biosystems and Photoprocesses in Transition Metal Complexes, Dissistents and Other Molecules; Kochansky, E., Ed.; Kluwer: Dordrecht, The Netherlands, 1992; p 271. (b) De Schryver, F. C.; Declercq, D.; Depamelaere, S.; Hermans, E.; Onkelings, A.; Verhoeven, J. W.; Gelan, J. J. Photochem. Photobiol. A: Chem. 1994, 82, 171.
  (50) McConnell, H. M. J. Chem. Phys. 1961, 35, 508.
  (51) Richardson, D. E.; Taube, H. J. Am. Chem. Soc. 1983, 105, 40.
  (52) Miller, J. R.; Beitz, J. V. J. Chem. Phys. 1981, 74, 6746.
  (53) Wasielewski, M. R. In Photoinduced Electron Transfer, Fox, M.

- A., Chanon, M., Eds.; Elsevier: New York, 1988; Part A, p 161. (54) Newton, M. D. Chem. Rev. 1991, 91, 767.
- (55) Jordan, K. D.; Paddon-Row, M. N. Chem. Rev. 1992, 92, 395.
- (56) Todd, M. D.; Nitzan, A.; Ratner, M. A. J. Phys. Chem. 1993, 97, 29.
- (57) Liang, C.; Newton, M. D. J. Phys. Chem. 1993, 97, 3199. (58) Curtiss, L. A.; Naleway, C. A.; Miller, J. R. J. Phys. Chem. 1995, 99 1182
- (59) Jortner, J. J. Chem. Phys. 1976, 64, 4860.
- (60) Ghiggino, K. P.; Smith, T. A. Prog. React. Kinetics 1993, 18, 375.
- (61) Förster, Th. H. Discuss. Faraday Soc. 1959, 27, 7.
- (62) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
- (63) Balzani, V.; Bolletta, F.; Scandola, F. J. Am. Chem. Soc. 1980, 102. 2152.
- Orlandi, G.; Monti, S.; Barigelletti, F.; Balzani, V. Chem. Phys. (64)**1980**, *52*, 313.
- (65) Sutin, N. Acc. Chem. Res. 1982, 15, 275.
- (66) Scandola, F.; Balzani, V. J. Chem. Educ. 1983, 60, 814.
  (67) Scholes, G. D.; Ghiggino, K. P. J. Photochem. Photobiol. A: *Chem.* **1994**, *80*, 355. Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman,
- (68)J. M. Tetrahedron 1989, 45, 4751. Gould, I. R.; Noukakis, D.; Gomez-John, L.; Goodman, J. L.;
- (69)Farid, S. J. Am. Chem. Soc. 1993, 115, 4405.
- (70) Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1987, 109, 2381.
- (71) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993.
- (72) Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.; Meyer, T. J. *J. Am. Chem. Soc.* **1982**, *104*, 6620. (73) Bessel, C. A.; See, R. F.; Jameson, D. L.; Churchill, M. R.;
- (75) Besser, C. R., See, R. P., Samssin, D. L., Churchin, M. R., Takeuchi, K. J. J. Chem. Soc., Dalton Trans. 1992, 3223.
   (74) Constable, E. C. Prog. Inorg. Chem. 1994, 42, 67.
   (75) Hecker, C. R.; Fanwick, P. E.; McMillin, D. Inorg. Chem. 1991,
- 30, 659.

- (76) Constable, E. C.; Cargill Thompson, A. M. W. J. Chem. Soc., Dalton Trans. 1992, 3467
- Constable, E. C.; Cargill Thompson, A. M. W.; Tocher, D. A. In Supramolecular Chemistry, Balzani, V., De Cola, L., Eds.; Kluwer: Dordrecht, The Netherlands, 1992; p 219.
- (78) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill Thompson, A. M. W. *Inorg. Chem.* **1995**, *34*, 2759.
- (79) De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L.; Belser, P.; Bernhard, S. Rec. Trav. Chim. Pays-Bas 1995, 114, 534.
- (80) (a) Belser, P.; Bernhard, S. Synthesis, in press. (b) Balzani, V.; Barigelletti, F.; Belser, P.; Bernhard, S.; De Cola, L.; Flamigni, L. Manuscript in preparation.
- (81) Closs, G. L.; Miller, J. R. Science 1989, 244, 35.
- (82) Oevering, H.; Paddon-Row, M. N.; Hoppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc. **1987**, *109*, 35.
- (83) Gust, D.; Moore, T. A. Adv. Photochem. 1991, 16, 1.
- (84) Gust, D.; Moore, T. A. Top. Curr. Chem. 1991, 159, 103.
- (85) Kurreck, H.; Huber, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 849
- (86) Heitele, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 359.
- (87) Larsson, S. J. Am. Chem. Soc. 1981, 103, 4034.
- (88) Isied, S. S.; Vassilian, A.; Wishart, J. F.; Creutz, C.; Schwartz, H. A.; Sutin, N. J. Am. Chem. Soc. 1988, 110, 635
- (89) Schanze, K. S.; Sauer, K. J. Am. Chem. Soc. 1988, 110, 1180.
- (90) Hupp, J. T. J. Am. Chem. Soc. 1990, 112, 1563.
- (91) Balzani, V.; Scandola, F. Supramolecular Photochemistry, Horwood: Chichester, U.K., 1991; Chapter 3.
  (92) Scandola, F.; Argazzi, R.; Bignozzi, C. A.; Indelli, M. T. J.
- Photochem. Photobiol. A: Chem. 1994, 82, 191.
- (93) Endicott, J. F.; Song, X.; Watzky, M. A.; Buranda, T. J. Photochem. Photobiol. A: Chem. 1994, 82, 181.
- (94) Giuffrida, G.; Campagna, S. Coord. Chem. Rev. 1994, 135/136, 517.
- (95) Denti, G.; Serroni, S.; Campagna, S.; Juris, A.; Ciano, M.; Balzani, V. In Perspectives in Coordination Chemistry, Williams, A. F., Floriani, C., Merbach, A. E., Eds.; VCH: Basel, Switzerland, 1992; p 153.
- (96) Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. Am. Chem. Soc. 1992, 114, 2944.
- (97) Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A.; Constable, E. C.; Cargill Thompson, A. M. W. J. Am. Chem. Soc. 1994, 116, 7692.
- (98) Buchlein, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 155.
- (99) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003.
- (100) Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer J. 1985, 17, 117.
- (101) Serroni, S.; Denti, G.; Campagna, S.; Juris, A.; Ciano, M.; Balzani, V. Angew. Chem., Int. Ed. Engl. 1992, 31, 1493.
- (102) Campagna, S.; Denti, G.; Serroni, S.; Juris, A.; Venturi, M.; Ricevuto, V.; Balzani, V. Chem. Eur. J. 1995, 1, 211.
- (103) Serroni, S.; Denti, G. Inorg. Chem. 1992, 31, 4251.
- (103) Serroin, S.; Denti, G. *Inog. Chem.* **1996**, *51*, 4251.
   (104) (a) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III. Angew. Chem., Int. Ed. Engl. **1990**, *29*, 138. (b) Newkome, G. R.; Morefield, C. N.; Baker, G. R. Aldrichimica Acta **1992**, *25*, 31. (c) Tomalia, D. A.; Durst, H. D.; Top. Curr. Chem. **1993**, *165*, 193. (d) Fréchet, J. M. J. Science **1994**, *263*, 1710.
- (105) Buchanan, B. E.; Wang, R.; Vos, J. G.; Hage, R.; Haasnoot, J. G.; Reedijk, J. *Inorg. Chem.* **1990**, *29*, 3263.
- (106) Didier, P.; Jacquet, L.; Kirsch-De Mesmaeker, A.; Hueber, R.; van Dorsselaer, A. Inorg. Chem. 1992, 31, 4803.
- (107) Denti, G.; Serroni, S.; Sindona, G.; Uccella, N. J. Am. Soc. Mass Spectrom. 1993, 4, 306.
- (108) Arakawa, R.; Matsuo, T.; Ohno, T.; Haga, M. Inorg. Chem. 1995, 34. 2464.
- (109) (a) Moucheron, C.; Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Van Dorsselaer, A. J. Chem. Soc., Dalton Trans. 1994, 885. (b) Russel, K. C.; Leize, E.; Van Dorsselaer, A.; Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1995, 34, 209.
- (110) Kirsh-De Mesmaeker, A.; van Dorsselaer, A. Private communication.
- (111) (a) Orellana, G.; Kirsch-De Mesmaeker, A.; Turro, N. J. Inorg. Chem. 1990, 29, 882. (b) Marzin, C.; Budde, F.; Steel, P. J.; Lerner, D. New J. Chem. 1987, 11, 33. (c) Brevard, C.; Granger, P. Inorg. Chem. 1983, 22, 532. (d) Steel, P. J.; Lahousse, F.; Lerner, D.; Marzin, C. Inorg. Chem. 1983, 22, 1488.
  (112) Predieri G.; Vignali C.; Donti G.; Sourgani S. Laorg Chim. Actor
- (112) Predieri, G.; Vignali, C.; Denti, G.; Serroni, S. Inorg. Chim. Acta 1993, 205, 145.
- (113) De Cola, L.; Belser, P.; Ebmeyer, F.; Barigelletti, F.; Vögtle, F.; von Zelewsky, A.; Balzani, V. Inorg. Chem. 1990, 29, 495.
- (114) Strouse, G. F.; Schoonover, J. R.; Duesing, R.; Meyer, T. J. Inorg. Chem. 1995, 34, 2725.
- (115) Rillema, D. P.; Mack, K. B. *Inorg. Chem.* 1982, *21*, 3849.
   (116) Rillema, D. P.; Allen, G.; Meyer, T. J.; Conrad, D. *Inorg. Chem.* 1983, 22, 1617.
- Flanagan, J. B.; Margel, S.; Bard, A. J.; Anson, F. C. J. Am. Chem. Soc. 1978, 100, 4248. (117)
## Polynuclear Transition Metal Complexes

- (118) Bignozzi, C. A.; Schoonover, J. R.; Scandola, F. Prog. Inorg. Chem., in press.
- (119) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163.
- (120) De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L.; Belser, P.; von Zelewsky, A.; Frank, M.; Vögtle, F. Inorg. Chem. 1993, 32 5228
- (121) Balzani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Gleria, M. Science 1975, 189, 852.
- (122) Grätzel, M., Ed. Energy Reusorces through Photochemistry and Catalysis; Academic Press: New York, 1983. Willner, I.; Willner, B. Adv. Photochem. 1995, 20, 217.
- (123) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141.
- (124) Balzani, V.; Scandola, F. Supramolecular Photochemistry; Horwood: Chichester, U.K., 1991; Chapter 12.
- (125) Molnar, S. M.; Nallas, G.; Bridgewater, J. S.; Brewer, K. J. J. *Am. Chem. Soc.* **1994**, *116*, 5206. (126) Rasmussen, S.; Yi, E.; Richter, M. M.; Place, H.; Brewer, K. J.
- Inorg. Chem. 1990, 29, 3926.
- (127) Jones, W. E.; Baxter, S. M.; Mecklenburg, S. L.; Erickson, B. W.; Peek, B. M.; Meyer, T. J. In Supramolecular Chemistry; Balzani, V., De Cola, L., Eds.; Kluwer: Dordrecht, The Netherlands, 1992; p 249. (128) (a) Wagner, R. W.; Lindsey, J. S. *J. Am. Chem. Soc.* **1994**, *116*,
- (a) Wagita, R. W., Emissy, 5: 55-76. Control Control (1997), 110, 9759. (b) Seth, J.; Palaniappan, V.; Johnson, T. E.; Prathapan, S.; Lindsey, J. S.; Bocian, D. F. *J. Am. Chem. Soc.* **1994**, *115*, 10578.
- (129) Anderson, S.; Anderson, D. H.; Bashall, A.; McPartlin, M.; Sanders, J. K. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1096.
- (130) Balzani, V.; Scandola, F. Supramolecular Photochemistry, Horwood: Chichester, U.K., 1991; Chapter 6.
  (131) Amadelli, R.; Argazzi, R.; Bignozzi, C. A.; Scandola, F. J. Am. Chem. Soc. 1990, 112, 7099.
- (132) Bignozzi, C. A.; Argazzi, R.; Chiorboli, C.; Scandola, F.; Dyer, R. B.; Schoonover, J. R.; Meyer, T. J. Inorg. Chem. 1994, 33, 1652
- (133) (a) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. (b) Grätzel, M. Comments Inorg. Chem. 1991, 12, 93. (c) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49.
- (134) Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J. Inorg. Chem. 1994, 33, 5741.
- (135) Bignozzi, C. A.; Argazzi, R.; Garcia, C. G.; Scandola, F.; Schoonover, J. R.; Meyer, T. J. J. Am. Chem. Soc. 1992, 114, 8727
- (136) Denti, G.; Campagna, S.; Balzani, V. In Mesomolecules: from Molecules to Materials; Mendenhall, D., Greensberg, A., Liebman, J., Eds.; Chapman and Hall: New York, 1995; p 69.
- (137) Campagna, S.; Denti, G.; Sabatino, L.; Serroni, S.; Ciano, M.; Balzani, V. J. Chem. Soc., Chem. Commun. 1989, 1500.
- (138) Murphy, W. R., Jr.; Brewer, K. J.; Gettliffe, G.; Petersen, J. D. Inorg. Chem. 1989, 28, 81.
- (139) Denti, G.; Serroni, S.; Campagna, S.; Ricevuto, V.; Balzani, V. Inorg. Chim. Acta 1991, 182, 127.
- (140) Denti, G.; Serroni, S.; Campagna, S.; Ricevuto, V.; Balzani, V. Coord. Chem. Rev. 1991, 111, 227.
- (141) Denti, G.; Serroni, S.; Campagna, S.; Ricevuto, V.; Juris, A.; Ciano, M.; Balzani, V. *Inorg. Chim. Acta* 1992, 198–200, 507.
   Juris, A.; Balzani, V.; Campagna, S.; Denti, G.; Serroni, S.; Frei,
- G.; Güdel, H. U. *Inorg. Chem.* **1994**, *33*, 1491. (143) Maestri, M.; Balzani,V.; Deuschel-Cornioley, C.; von Zelewsky,
- A. Adv. Photochem. 1992, 17, 1.
- (144) Serroni, S.; Juris, A.; Campagna, S.; Venturi, M.; Denti, G.; Balzani, V. J. Am. Chem. Soc. **1994**, *116*, 9086.
- (a) Newkome, G. R.; Cardullo, F.; Constable, E. C.; Moorefield, C. N.; Cargill Thompson, A. M. W. *J. Chem Soc., Chem. Commun.* **1993**, 925. (b) Newkome, G. R.; Moorefield, C. N. (145) Macromol. Symp. 1994, 77, 63.
- (146) Cloutet, E.; Fillaut, J.-L.; Gnanou, Y.; Astruc, D. J. Chem Soc., Chem. Commun. 1994, 2433.
- (147) Achar, S.; Puddephatt, R. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 847.
- 148) Liao, Y.-H.; Moss, J. R. Organometallics 1995, 14, 2130.
- Serroni, S.; Campagna, S.; Juris, A.; Venturi, M.; Balzani, V.; (149)Denti, G. Gazz. Chim. Ital. 1994, 124, 423.
- (150) Mesomolecules: from Molecules to Materials; Mendenhall, D., Greensberg, A., Liebman, J., Eds.; Chapman and Hall: New York, 1995.
- (151) (a) Zimmerman, H. E.; King, R. K.; Meinhardt, M. B. J. Org. Chem. 1992, 57, 5484 and references therein. (b) Paulson, B.; Pramod, K.; Eaton, P.; Closs, G.; Miller, J. R. J. Phys. Chem. 1993, 97, 13042.
- (152) Kaszynski, P.; Friedli, A. C.; Michl, J. J. Am. Chem Soc. 1992, 114, 601.
- (153) Amabilino, D. B.; Ashton, P. R.; Reder, A. S.; Spencer, N.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1994, 33, 1286.
  (154) Baxter, P. N. W.; Lehn, J.-M.; Fischer, J.; Youinou, M.-P. Angew. Chem., Int. Ed. Engl. 1994, 33, 2284.
  (155) (a) Distribute Buschecker, C. O.; Sauwaga, J. P.; Da Cian, A.;
- (155) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; De Cian, A.; Fischer, J. J. Chem Soc., Chem. Commun. 1994, 2231. (b) Piguet, C.; Hopfgartner, G.; Bocquet, B.; Schaad, O.; Williams, A. F. J. Am. Chem. Soc. 1994, 116, 9092.

- (156) Stang, P. J.; Cao, D. H.; Saito, S.; Arif, A. M. J. Am. Chem. Soc. 1995, 117, 6273.
- (157) Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116, 12119.
- (158) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Acc. Chem. Res. 1995, 28. 37.
- (159) Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. J. Am. Chem Soc. 1995, 117, 2159. (160) Jansen, J. F. G. A.; Meijer, E. W. J. Am. Chem. Soc. 1995, 117,
- 4417
- (161) Hunter, C. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1079.
- (162) Molecular Electronic Devices; Carter, F. L., Siatkowsky, R. E., Woltjien, H., Eds.; North Holland: Amsterdam, The Netherlands, 1988.
- (163) Drexler, K. E. Nanosystems. Molecular Machinery, Manufacturing, and Computation; Wiley: New York, 1992.
- (164) Bard, A. J. Integrated Chemical Systems. A Chemical Approach to Nanotechnology; Wiley: New York, 1994. (165) Craig, C. A.; Garces, F. O.; Watts, R. J. In Photochemistry and
- Photophysics of Coordination Compounds; Yersin, H., Vogler, A., Eds.; Springer-Verlag: Berlin, 1987; p 135. (166) Garces, F. O.; King, K. A.; Watts, R. J. *Inorg. Chem.* **1988**, *27*,
- 3464.
- (167) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647.
- (168) Bignozzi, C. A.; Indelli, M. T.; Scandola, F. J. Am. Chem. Soc. 1989, 111, 5192.
- (169) Lei, Y.; Buranda, T.; Endicott, J. F. J. Am. Chem. Soc. 1990, 112, 8820.
- (170) Bignozzi, C. A.; Roffia, S.; Chiorboli, C.; Davila, J.; Indelli, M. T.; Scandola, F. *Inorg. Chem.* **1989**, *28*, 4350.
- (171) Bignozzi, C. A.; Argazzi, R.; Schoonover, J. R.; Gordon, K. C.; Dyer, R. B.; Scandola, F. *Inorg. Chem.* 1992, *31*, 5260.
   (172) Bignozzi, C. A.; Scandola, F. *Inorg. Chem.* 1984, *23*, 1540.
   (173) Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, Md. K. *Inorg. Chem.* 1090, *21*, 5240.
- Chem. 1992, 31, 5243.
- (174) Bignozzi, C. A.; Bortolini, O.; Chiorboli, C.; Indelli, M. T.; Rampi,
- M. A.; Scandola, F. *Inorg. Chem.* **1992**, *31*, 172. (175) Bignozzi, C. A.; Chiorboli, C.; Indelli, M. T.; Scandola, F. Bertolasi, V.; Gilli, G. J. Chem. Soc., Dalton Trans. 1994, 2391.
- (176) Indelli, M. T.; Scandola, F. J. Phys. Chem. 1993, 97, 3328. (177) Matsui, K.; Nazeeruddin, Md. K.; Humphry-Baker, R.; Grätzel,
- M.; Kalyanasundaram, K. J. Phys. Chem. 1992, 96, 10590.
- (178) Matsui, K.; Nazeeruddin, Md. K.; Humphry-Baker, R.; Vlachopoulos, N.; Grätzel, M.; Hester, R. E.; Kalyanasundaram, K. Inorg. Chem., in press.
- (179) Chun, S.; Palmer, D. C.; Mattimore, E. F.; Lees, A. J. Inorg. Chim. Acta 1983, 77, L119.
- (180) Lees, A. J.; Fobare, J. M.; Mattimore, E. F. Inorg. Chem. 1984, 23, 2709.
- (181) Zulu, M. M.; Lees, A. J. Inorg. Chem. 1988, 27, 3325. (182) Zulu, M. M.; Lees, A. J. Organometallics 1989, 8, 955.

- (183) Zulu, M. M.; Lees, A. J. *Inorg. Chem.* **1988**, *27*, 1139.
  (184) Zulu, M. M.; Lees, A. J. *Inorg. Chem.* **1989**, *28*, 85.
  (185) Lin, R.; Fu, Y.; Brock, C. P.; Guarr, T. F. *Inorg. Chem.* **1992**, *31*, 4346.
- (186) Wang, Y.; Schanze, K. S. Inorg. Chem. 1994, 33, 1354.
- (187) Kaim, W.; Kohlmann, S.; Lees, A. J.; Zulu, M. Z. Anorg. Allg. *Chem.* **1989**, *57*, 97. (188) Curtis, J. C.; Bernstein, J. S.; Meyer, T. J. *Inorg. Chem.* **1985**,
- 24, 385.
- (189) Loeb, L. B.; Neyhart, G. A.; Worl, L. A.; Danielson, E.; Sullivan,
- (189) Eber, E. B., Neylart, G. A., Wolt, E. A., Danteson, E., Sunivan, B. P.; Meyer, T. J. J. Phys. Chem. **1989**, 93, 717.
   (190) Garcia-Herbosa, G.; Muñoz, A.; Maestri, M. J. Photochem. Photobiol. A: Chem. **1994**, 83, 165.
- (191) Tapolsky, G.; Duesing, R.; Meyer, T. J. Inorg. Chem. 1990, 29, 2285
- (192) Tapolsky, G.; Duesing, R.; Meyer, T. J. J. Phys. Chem. 1991, *95*, 1105.
- (193) Schanze, K. S.; Neyhart, G. A.; Meyer, T. J. J. Phys. Chem. 1986, 90. 2182.
- (194) Schanze, K. S.; Meyer, T. J. Inorg. Chem. 1985, 24, 2121.
- (195) Lin, R.; Guarr, T. F. *Inorg. Chim. Acta* **1994**, *226*, 79. (196) Yam, V. W.-W.; Lau, V. C.-Y.; Cheung, K.-K. J. Chem. Soc.,
- Chem. Commun. 1995, 259.
- (197) Yoon, D. I.; Berg-Brennan, C. A.; Lu, H.; Hupp, J. T. Inorg. Chem. 1992, 31, 3192.
- (198) Araki, K.; Toma, H. E. J. Photochem. Photobiol. A: Chem. 1994, 83. 245.
- (199) Harvey, P. D. Inorg. Chem. 1995, 34, 2019.
- (200) Kalyanasundaram, K.; Nazeeruddin, Md. K. Inorg. Chem. 1990, *29*. 1888.
- (201) Ernst, S. D.; Kaim, W. Inorg. Chem. 1989, 28, 1520.
- (201) Ernst, S. D.; Kalm, W. Ihorg. Chem. 1989, 28, 1520.
  (202) Hunziker, M.; Ludi, A. J. Am. Chem. Soc. 1977, 99, 7370.
  (203) MacQueen, D. B.; Petersen, J. D. Inorg. Chem. 1990, 29, 2313.
  (204) Sahai, R.; Rillema, D. P.; Shaver, R.; Van Wallendael, S.; Jackman, D. C.; Boldaji, M. Inorg. Chem. 1989, 28, 1022.
  (205) Vogler, A.; Kisslinger, J. Inorg. Chim. Acta 1986, 115, 193.
  (206) Dose, E. V.; Wilson, L. J. Inorg. Chem. 1978, 17, 2660.

## 832 Chemical Reviews, 1996, Vol. 96, No. 2

- (207) Hissler, M.; Ziessel, R. Submitted for publication.
- (208) Hissler, M.; Ziessel, R. J. Chem. Soc., Dalton Trans. 1995, 893.
- (209) Benniston, A. C.; Goulle, V.; Harriman, A.; Lehn, J.-M.; Marczinke, B. J. Phys. Chem. 1994, 98, 7804. (210) Larson, S. L.; Hendrickson, S. M.; Ferrere, S.; Derr, D. L.; Elliott,
- C. M. J. Am. Chem. Soc. 1995, 117, 5881.
- (211) Song, X.; Lei, Y.; Van Wallendael, S.; Perkovic, M. W.; Jackman, D. Č.; Endicott, J. F.; Rillema, D. P. J. Phys. Chem. 1993, 97, 3225
- (212) Furue, M.; Kuroda, N.; Nozakura, S. Chem. Lett. 1986, 1209. (213) Furue, M.; Kuroda, N.; Sano, S. J. Macromol. Sci. Chem. 1988, A25, 1263.
- (214) Sahai, R.; Baucom, D. A.; Rillema, D. P. Inorg. Chem. 1986, 25, 3843.
- Sasaki, I.; Imberdis, M.; Gaudemer, A.; Drahi, B.; Azhari, D.; Amouyal, E. *New. J. Chem.* **1994**, *18*, 759. (215)
- (216) Indelli, M. T.; Bignozzi, C. A.; Harriman, A.; Schoonover, J. R.;
- Scandola, F. J. Äm. Chem. Soc. 1994, 116, 3768 Van Wallendael, S.; Perkovic, M. W.; Rillema, D. P. Inorg. Chim. (217)Acta 1993, 213, 253.
- Van Wallendael, S.; Rillema, D. P. J. Chem. Soc., Chem. (218)Commun. 1990, 1081.
- (219) Van Wallendael, S.; Rillema, D. P. Coord. Chem. Rev. 1991, 111, 297.
- (220) Furue, M.; Yoshidzumi, T.; Kinoshita, S.; Kushida, T.; Nozakura, S.; Kamachi, M. Bull. Chem. Soc. Jpn. 1991, 64, 1632
- (221) Van Wallendael, S.; Shaver, R. J.; Rillema, D. P.; Yoblinski, B.
- J.; Stathis, M.; Guarr, T. F. *Inorg. Chem.* **1990**, *29*, 1761. (222) Schmehl, R. H.; Auerbach, R. A.; Wacholtz, W. F.; Elliott, C. M.; Freitag, R. A.; Merkert, J. W. Inorg. Chem. 1986, 25, 2440.
- (223) Furue, M.; Hirata, M.; Kinoshita, S.; Kushida, T.; Kamachi, M. Chem. Lett. 1990, 2065.
- (224) Furue, M.; Naiki, M.; Kanematsu, Y.; Kushida, T.; Kamachi, M. Coord. Chem. Rev. 1991, 111, 221.
- (225) Furue, M.; Maruyama, K.; Kanematsu, Y.; Kushida, T.; Kamachi, M. Coord. Chem. Rev. 1994, 132, 201.
- (226) Furue, M.; Kinoshita, S.; Kushida, T. Chem. Lett. 1987, 2355.
- (227)Strouse, G. F.; Schoonover, J. R.; Duesing, R.; Boyde, S.; Jones, W. E., Jr.; Meyer, T. J. Inorg. Chem. 1995, 34, 473.
- (228) Baba, A. I.; Ensley, H. E.; Schmehl, R. H. Inorg. Chem. 1995, *34*, 1198.
- (229)Schmehl, R. H.; Auerbach, R. A.; Wacholtz, W. F. J. Phys. Chem. **1988**, *92*, 6202.
- (230) Ryu, C. K.; Schmehl, R. H. J. Phys. Chem. 1989, 93, 7961.
- Wacholtz, W. F.; Auerbach, R. A.; Schmehl, R. H. Inorg. Chem. (231)1987, 26, 2989.
- (232) Shaw, J. R.; Webb, R. T.; Schmehl, R. H. J. Am. Chem. Soc. 1990, 12, 1117
- (233) Shaw, J. R.; Schmehl, R. H. J. Am. Chem. Soc. 1991, 113, 389.
- (234) De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L.; Belser, P.; von Zelewsky, A.; Frank, M.; Vögtle, F. *Mol. Cryst. Liq. Cryst.* 1993. 234. 115.
- (235) De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L.; Belser, P.; von Zelewsky, A.; Frank, M.; Vögtle, F. Mol. Cryst. Liq. Cryst. **1994**, *252*, 97.
- (236) Frank, M.; Nieger, M.; Vögtle, F.; Belser, P.; von Zelewsky, A.; De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L. Inorg. *Chim. Acta*, in press.
- (237)Vögtle, F.; Frank, M.; Nieger, M.; Belser, P.; von Zelewsky, A.; Balzani, V.; Barigelletti, F. De Cola, L.; Flamigni, L. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 1643.
- (238) Belser, P.; Dux, R.; Baak, M.; De Cola, L.; Balzani, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 595.
- De Cola, L.; Balzani, V.; Dux, R.; Baak, M. Supramol. Chem. (239)1995. 5. 297
- (240) Romero, F. M.; Ziessel, R. Tetrahedron Lett. 1995, 35, 9203.
- (241) Belser, P.; von Zelewsky, A.; Frank, M.; Seel, C.; Vögtle, F.; De Cola, L.; Barigelletti, F.; Balzani, V. J. Am. Chem. Soc. 1993, 115. 4076.
- (242) De Cola, L.; Barigelletti, F.; Balzani, V.; Belser, P.; von Zelewsky, A.; Seel, C.; Frank, M.; Vögtle, F. In Supramolecular Chemistry, Balzani, V., De Cola, L., Eds; Kluwer Academic Publishers: The Netherlands, 1992; p 157.
- (243) De Cola, L.; Barigelletti, F.; Balzani, V.; Belser, P.; von Zelewsky, A.; Seel, C.; Frank, M.; Vögtle, F. Coord. Chem. Rev. 1991, 111, 255
- (244) Barigelletti, F.; De Cola, L.; Balzani, V.; Belser, P.; von Zelewsky, A.; Ebmeyer, F.; Vögtle, F. In Photoconversion Processes for Energy and Chemicals; Hall, D. O., Grassi, G., Eds.; Elsevier: London, 1989; p 46.
- (245) Juris, A.; Campagna, S.; Bidd, I.; Lehn, J.-M.; Ziessel, R. Inorg. Chem. 1988, 27, 4007.
- (246) Grosshenny, V.; Ziessel, R. J. Chem. Soc., Dalton Trans. 1993, 817.
- (247) Downward, A. J.; Honey, G. E.; Phillips, L. F.; Steel, P. J. Inorg. Chem. 1991, 30, 2259.
- Juris, A.; Ziessel, R. Inorg. Chim. Acta 1994, 225, 251. (248)
- (249)Youinou, M.-T.; Ziessel, R.; Lehn, J.-M. Inorg. Chem. 1991, 30, 2144.

- (250) Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1987, 1292.
- (251) Ziessel, R.; Maestri, M.; Prodi, L.; Balzani, V.; Van Dorsselaer, A. Inorg. Chem. 1993, 32, 1237. (252) Balzani, V.; Bardwell, D. A.; Barigelletti, F.; Cleary, R. L.;
- Guardigli, M.; Jeffery, J. C.; Sovrani, T.; Ward, M. D. J. Chem. Soc., Dalton Trans. **1995**, 3601.
- (253) Bardwell, D. A.; Barigelletti, F.; Cleary, R. L.; Flamigni, L.; Guardigli, M.; Jeffery, J. C.; Ward, M. D. Inorg. Chem. 1995, 34, 2438.
- (254) Johnson, J. E. B.; Ruminski, R. R. Inorg. Chim. Acta 1993, 208, 231.
- Yao, Y.; Perkovic, M. W.; Rillema, D. P.; Woods, C. Inorg. Chem. (255)1992, 31, 3956.
- (256) Dietrich-Buchecker, C. O.; Nierengarten, J.-F.; Sauvage, J.-P.; Armaroli, N.; Balzani, V.; De Cola, L. J. Am. Chem. Soc. 1993, 115. 11237
- (257) Armaroli, N.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L.; Sauvage, J.-P.; Hemmert, C. J. Am. Chem. Soc. 1994, 116, 5211.
- (258) Dietrich-Buchecker, C. O.; Hemmert, C.; Sauvage, J.-P. New. J. Chem. 1990, 14, 603.
- (259) Vögtle, F.; Lüer, I.; Balzani, V.; Armaroli, N. Angew. Chem., Int. Ed. Engl. 1991, 30, 1333.
- (260) Petersen, J. D. In Supramolecular Photochemistry, Balzani, V., Ed.; Reidel: Dordrecht, The Netherlands, 1987; p 135.
- (261) Yam, V. W.-W.; Lo, K. K.-W. J. Chem. Soc., Dalton Trans. 1995, 499.
- (262) Campagna, S.; Denti, G.; De Rosa, G.; Sabatino, L.; Ciano, M.; Balzani, V. Inorg. Chem. 1989, 28, 2565.
- (263) Wallace, A. W.; Murphy, W. R., Jr.; Petersen, J. D. Inorg. Chim. Acta 1989, 166, 47.
- (264) Denti, G.; Campagna, S.; Sabatino, L.; Serroni, S.; Ciano, M.; Balzani, V. *Inorg. Chem.* **1990**, *29*, 4750.
  (265) Haga, M.; Ali, M. M.; Koseki, S.; Yoshimura, A.; Nozaki, K.;
- Ohno, T. Inorg. Chim. Acta 1994, 226, 17. Braunstein, C. H.; Baker, A. D.; Strekas, T. C.; Gafney, H. D. (266)Inorg. Chem. 1984, 23, 857.
- (267) Berger, R. M. Inorg. Chem. 1990, 29, 1920.
   (268) Fuchs, Y.; Lofters, S.; Dieter, T.; Shi, W.; Morgan, R.; Strekas, T. C.; Gafney, H. D.; Baker, A. D. J. Am. Chem. Soc. 1987, 109, 2691.
- (269) Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, Md. K. J. Chem. Soc., Dalton Trans. 1991, 343.
- (270) Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, Md. K. J. Phys. Chem. 1992, 96, 5865.
- (271) Yam, V. W.-W.; Lee, V. W.-M.; Cheung, K.-K. J. Chem. Soc., Chem. Commun. 1994, 2075.
- (272) Kalyanasundaram, K.; Nazeeruddin, Md. K. J. Chem. Soc., Dalton Trans. 1990, 1657.
- (273) Richter, M. M.; Brewer, K. J. Inorg. Chem. 1992, 31, 1594.
- (274) Kalyanasundaram, K.; Nazeeruddin, Md. K. Chem. Phys. Lett. **1989**, *158*, 45.
- (275) Denti, G.; Serroni, S.; Sabatino, L.; Ciano, M.; Ricevuto, V.; Campagna, S. *Gazz. Chim. Ital.* **1991**, *121*, 37.
- (276) Richter, M. M.; Brewer, K. J. Inorg. Chem. 1993, 32, 2827.
- Campagna, S.; Denti, G.; Sabatino, L.; Serroni, S.; Ciano, M.; (277)Balzani, V. *Gazz. Chim. Ital.* **1989**, *119*, 415. (278) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.;
- Venturi, M. *Coord. Chem. Rev.* **1994**, *132*, 1. (279) Campagna, S.; Denti, G.; Serroni, S.; Ciano, M.; Balzani, V.
- Inorg. Chem. 1991, 30, 3728.
- (280) Denti, G.; Campagna, S.; Sabatino, L.; Serroni, S.; Ciano, M.; Balzani, V. Inorg. Chim. Acta 1990, 176, 175.
- (281) Serroni, S.; Denti, G.; Campagna, S.; Ciano, M.; Balzani, V. J. Chem. Soc., Chem. Commun. 1991, 944.
- (282) Campagna, S.; Denti, G.; Serroni, S.; Ciano, M.; Juris, A.; Balzani, V. *Inorg. Chem.* **1992**, *31*, 2982.
- (283) Molnar, S. M.; Neville, K. R.; Jensen, G. E.; Brewer, K. J. Inorg. Chim. Acta 1993, 206, 69.
- (284) Cooper, J. D.; MacQueen, D. B.; Petersen, J. D.; Wertz, D. W. Inorg. Chem. 1990, 29, 3701.
- (285) Denti, G.; Campagna, S.; Sabatino, L.; Serroni, S.; Ciano, M.; Balzani, V. In Photochemical Conversion and Storage of Solar Energy, Pelizzetti, E., Schiavello, M., Eds.; Kluwer: Dordrecht, The Netherlands, 1991; p 27.
- (286) Jaradat, Q.; Barqawi, K.; Akashek, T. S. Inorg. Chim. Acta 1986, 116.63.
- (287) Rillema, D. P.; Callahan, R. W.; Marck, K. B. Inorg. Chem. 1982, 21. 2589.
- (288) Jacquet, L.; Kirsch-De Mesmaeker, A. J. Chem. Soc., Faraday Trans. 1992, 88, 2471.
- (289) Masschelein, A.; Kirsch-De Mesmaeker, A.; Verhoeven, C.; Nasielski-Hinkens, R. Inorg. Chim. Acta 1987, 129, L13.
- (290) Tan-Sien-Hee, L.; Kirsch-De Mesmaeker, A. J. Chem. Soc., Dalton Trans. 1994, 3651.
- (291) Rillema, D. P.; Sahai, R.; Matthews, F.; Edwards, H. K.; Shaver, R. J.; Morgan, L. Inorg. Chem. 1990, 29, 167.
- (292) Haga, M.-A. Inorg. Chim. Acta 1980, 45, L183.
- (293) Ohno, T.; Nozaki, K.; Haga, M. Inorg. Chem. 1992, 31, 548.

- (294) Haga, M.; Ali, M. M.; Maegawa, H.; Nozaki, K.; Yoshimura, A.; Ohno, T. Coord. Chem. Rev. 1994, 132, 99.
- (295) Yoshimura, A.; Nozaki, K.; Ikeda, N.; Ohno, T. J. Phys. Chem., in press
- (296) Nozaki, K.; Ohno, T.; Hama, M. J. Phys. Chem. 1992, 96, 10880. (297) Haga, M.; Ano, T.; Kano, K.; Yamabe, S. Inorg. Chem. 1991, 30,
- 3843. (298) Haga, M.; Ano, T.; Ishizaki, T.; Kano, K.; Nozaki, K.; Ohno, T. J. Chem. Soc., Dalton Trans. **1994**, 263.
- (299) Ohno, T.; Nozaki, K.; Haga, M. Inorg. Chem. 1992, 31, 4256.
   (300) Nozaki, K.; Ohno, T. Coord. Chem. Rev. 1994, 132, 215.
- (301) Lempers, H. E. B.; Haasnoot, J. G.; Reedijk, J.; Hage, R.; Weldon,
- F. M.; Vos, J. G. Inorg. Chim. Acta 1994, 225, 67. (302) De Wolf, J. M.; Hage, R.; Haasnoot, J. G.; Reedijk, J.; Vos, J. G. New J. Chem. **1991**, *15*, 501.
- (303) De Cola, L.; Barigelletti, F.; Balzani, V.; Hage, R.; Haasnoot, J. G.; Reedijk, J.; Vos, J. G. Chem. Phys. Lett. 1991, 178, 491.
- (304) Barigelletti, F.; De Cola, L.; Balzani, V.; Hage, R.; Haasnoot, J. G.; Reedijk, J.; Vos, J. G. *Inorg. Chem.* **1989**, *28*, 4344.
- (305) Hughes, H. P.; Martin, D.; Bell, S.; McGarvey, J. J.; Vos, J. G. Inorg. Chem. 1993, 32, 4402.
- (306) Hage, R.; Haasnoot, J. G.; Reedijk, J.; Wang, R.; Vos, J. G. Inorg. Chem. 1991, 30, 3263.
- van Diemen, J. H.; Hage, R.; Haasnoot, Lempers, H. E. B.; (307)Reedijk, J.; Vos, J. G.; De Cola, L.; Barigelletti, F.; Balzani, V. Inorg. Chem. 1992, 31, 3518.
- (308) Barigelletti, F.; De Cola, L.; Balzani, V.; Hage, R.; Haasnoot, J. G.; Reedijk, J.; Vos, J. G. *Inorg. Chem.* **1991**, *30*, 641.
- (309) Hage, R.; Haasnoot, J. G.; Nieuwenhuis, H. A.; Reedijk, J.; de Riddler, D. J. A.; Vos, J. G. J. Am. Chem. Soc. 1990, 112, 9245.
- (310) Serroni, S.; Campagna, S.; Denti, G.; Keyes, T.; Vos, J. G. Submitted for publication.
- (311) Giuffrida, G.; Calogero, G.; Guglielmo, G.; Ricevuto, V.; Campagna, S. *Inorg. Chem.* **1993**, *32*, 1179. (312) Giuffrida, G.; Calogero, G.; Ricevuto, V.; Campagna, S. *Inorg.*
- Chem. 1995, 34, 1957.
- (313) Hughes, H. P.; Vos, J. G. Inorg. Chem. 1995, 34, 4001.
- (314) Müller, E.; Nazeeruddin, Md. K.; Grätzel, M.; Kalyanasundaram, K. Submitted for publication.

- (315) Vogler, L. M.; Scott, B.; Brewer, K. J. Inorg. Chem. 1993, 32, 898
- (316) Arana, C. R.; Abruña, H. D. Inorg. Chem. 1993, 32, 194.
- (317) Hanan, G. S.; Arana, C. R.; Lehn, J.-M.; Campagna, S.; Credi, A.; Balzani, V. Chem. Phys. Lett. 1995, 243, 102.
- (318) Hanan, G. S.; Arana, C. R.; Lehn, J.-M.; Fenske, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1122.
- (319) Indelli, M. T.; Scandola, F.; Collin, J.-P.; Sauvage, J.-P.; Sour, A. Inorg. Chem., **1996**, *35*, 303-312.
- (320) Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A.; Constable, E. C.; Cargill Thompson, A. M. W. J. Chem. Soc., Chem. Commun. 1993, 942.
- (321) Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A.; Constable, E. C.; Cargill Thompson, A. M. W. Coord. Chem. Rev. 1994, 132, 209.
- (322) Benniston, A. C.; Grosshenny, V.; Harriman, A.; Ziessel, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1884.
- (323) Grosshenny, V.; Harriman, A.; Ziessel, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1100.
- (324) Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A. New. J. Chem. 1995, 19, 793.
- (325) Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, 116, 5679.
- (326) Beley, M.; Chodorowsky, S.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L.; Barigelletti, F. Inorg. Chem. 1994, 33, 2543.
- (327) Barigelletti, F.; Flamigni, L.; Guardigli, M.; Juris, A.; Beley, M.; Chodorowsky-Kimmes, S.; Collin, J.-P.; Sauvage, J.-P. Inorg. Chem. 1996, 35, 136.
- (328) Beley, M.; Collin, J.-P.; Sauvage, J.-P. Inorg. Chem. 1993, 32, 4539
- (329) Beley, M.; Chodorowski-Kimmes, S.; Collin, J.-P.; Lainé, P.; Launay, J.-P.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1775
- (330)Wan, P.-W.; Fox, A. M. Inorg. Chem. 1995, 34, 36.
- (331) Blanton, C. B.; Murtaza, Z.; Shaver, R. J.; Rillema, D. P. Inorg. Chem. 1992, 31, 3230.

CR941154Y

834 Chemical Reviews, 1996, Vol. 96, No. 2

Balzani et al.